HARVEST FOUR CORNERS, LLC

REVISED STAGE 1 ABATEMENT PLAN LATERAL L - 2 PIPELINE RELEASE INCIDENT # NVF1724832528 REMEDIATION PERMIT 3RP - 1061

MARCH 21, 2022

****\$P

REVISED STAGE 1 ABATEMENT PLAN LATERAL L - 2 PIPELINE RELEASE INCIDENT # NVF1724832528 REMEDIATION PERMIT 3RP - 1061

HARVEST FOUR CORNERS, LLC

PROJECT NO.: TE090321009 DATE: MARCH 21, 2022

WSP USA INC 848 EAST SECOND AVE DURANGO, COLORADO 81301

T: +1 970-385-1096 WSP.COM

March 21, 2022

New Mexico Energy, Minerals and Natural Resources Department New Mexico Oil Conservation Division 1000 Rio Brazos Road Aztec, New Mexico 87410

Subject: Revised Stage 1 Abatement Plan Lateral L - 2 Pipeline Release Incident # NVF1724832528 Remediation Permit 3RP - 1061

To Whom It May Concern:

On behalf of Harvest Four Corners, LLC (Harvest), WSP USA Inc. (WSP) presents the following Revised Stage 1 Abatement Plan (Plan) associated with subsurface hydrocarbon impacts encountered at the Lateral L -2 pipeline release (Site) with Incident # NVF1724832528 and Remediation Permit (RP) # 3RP-1061. This Plan details the site description and background, initial response and assessment activities, site geologic and hydrologic characteristics, excavation activities, and monitoring well installation and sampling activities to-date. The Plan proposes additional monitoring activities and provides a proposed schedule for completion of those activities.

A previous version of a Stage 1 Abatement Plan was submitted to the New Mexico Oil Conservation Division (NMOCD) on December 28, 2018. Due to changing site conditions and a lack of response from the NMOCD regarding acknowledgement of receipt or approval of the preceding Plan, Harvest respectfully requests this current revised Plan replace the previous submittal that has yet to be approved.

Yours sincerely,

Eric Conoll

Eric Carroll Consultant, Geologist

Knowle

Brooke Herb Senior Consultant, Geologist

Received by OCD: 3/23/2022 11:04:47 AM

vsp

TABLE OF CONTENTS

1	SITE DESCRIPTION AND BACKGROUND1
1.1	Regional Geology and Hydrology1
1.2	Local Geology and Hydrology1
1.3	Land and Water Use 2
1.4	Initial Response
1.5	Initial Remediation Activities2
2	GROUNDWATER SITE INVESTIGATION
2.1	Temporary Monitoring Well Installation3
2.2	Groundwater Sampling3
2.3	Additional Monitoring Well Installation3
2.4	Additional Delineation4
2.5	Analytical Results4
2.6	Conclusions
2.7	Quality Assurance5
3	RECOMMENDATIONS
3.1	Proposed Groundwater Monitoring6
3.2	Proposed Schedule
BIBLI	OGRAPHY7

Lateral H-21 Pipeline Release Project No. TE090321009 Harvest Four Corners, LLC WSP March 2022 Page ii

.

FIGURES

FIGURE 1	SITE LOCATION MAP
FIGURE 2	GROUNDWATER ANALYTICAL RESULTS
FIGURE 3	RECEPTOR MAP

TABLES

TABLE 1	GROUNDWATER ELEVATION SUMMARY
TABLE 2	GROUNDWATER

APPENDICES

APPENDIX A	LABORATORY ANALYTICAL REPORTS
APPENDIX B	BORE LOGS

.

1 SITE DESCRIPTION AND BACKGROUND

The Lateral L -2 pipeline release (Site) is located adjacent to Armenta Canyon in the northeast quarter of the southeast quarter of Section 14 of Township 28 North, Range 10 West in San Juan County, New Mexico, approximately 4.8 miles southwest of Blanco (Figure 1). The Site is an active natural gas pipeline operated by Harvest Four Corners, LLC (Harvest), which acquired the pipeline from Williams Four Corners LLC (Williams). On July 20, 2017, a pipeline leak was detected by Williams during a leak survey on the Lateral L-2 pipeline leg adjacent to Armenta Canyon. The pipeline was immediately shut-in and repaired. The release was reported to the New Mexico Oil Conservation Division (NMOCD) by Williams on a Form C-141 *Release Notification and Corrective Action Form* on August 2, 2017.

1.1 REGIONAL GEOLOGY AND HYDROLOGY

The Nacimiento Formation of Tertiary age is exposed in the region, along with Quaternary alluvial and aeolian sands within dry washes and arroyos. Cretaceous and Tertiary sandstones, as well as Quaternary alluvial deposits, serve as the primary aquifers in the San Juan Basin. In most of the area, the Nacimiento Formation lies at the surface. Thickness of the Nacimiento Formation ranges from 418 feet to 2,232 feet, aquifers within the coarser and continuous sandstone bodies are between 0 feet and 1,000 feet deep in this section of the San Juan Basin (Stone et al., 1983). Groundwater within these aquifers generally flows toward the nearby San Juan River and its tributaries. The Site is approximately 150 feet west of the main channel of Armenta Canyon, a first-order tributary of the San Juan River. Groundwater close to the San Juan River and its major tributaries is shallow, as the Quaternary deposits associated with the San Juan River form shallow aquifers. Groundwater was identified at approximately 6 feet below ground surface (bgs) at the Site.

1.2 LOCAL GEOLOGY AND HYDROLOGY

Based on information obtained during previous subsurface investigations, soil at the Site is characterized as alluvial sand from ground surface to approximately 6 feet bgs. In general, grain size increases with depth. Near the pipeline release (MW-1 and MW-2), organic content in the sand increases, resulting in a black color and decomposed organic odor. The organic deposit was not observed in the other boreholes. Near Armenta Canyon at monitoring wells MW-6 and MW-7, the sand appears to pinch out over a lean, organic-rich clay at approximately 8 feet bgs. The clay was observed in MW-7 and resulted in auger refusal in MW-6. Field screening results from borehole samples and laboratory analysis of a soil sample collected from the sand following excavation indicate impacted soil was removed during pipeline repairs. Borelogs are included as Appendix A.

Groundwater was encountered in the excavation at approximately 6 feet bgs. Once temporary monitoring wells were installed and surveyed, depth to groundwater was measured in all temporary monitoring wells. Groundwater elevations measured during all of the sampling events are included in Table 1. Depth to groundwater ranges from 6.63 feet below top of casing (btoc) (MW-1) to 7.91 feet btoc (MW-2). No free product was detected with the oil-water interface probe during any sampling event. Based on topography, initial data, and regional groundwater trends, the generalized groundwater flow direction appears to be to the northeast, towards Armenta Canyon (Figure 2).

Based on soil texture, the Natural Resources Conservation Service (NRCS) assigns a saturated hydraulic conductivity of 0.004 centimeters per second (cm/sec) to greater than 0.014 cm/sec for sands and coarse sands, which appears to be in alignment with soil conditions near Armenta Canyon. The groundwater flow gradient calculated from the potentiometric surface contours is approximately 0.010 feet per foot (ft/ft).

1.3 LAND AND WATER USE

Land use surrounding the Site consists of natural gas development and undeveloped Bureau of Land Management (BLM) pasture and range land. There are no residences or buildings within 1-mile of the Site. There are no water wells within 1-mile of the Site. The closest permitted water well is SJ 03743, located approximately 1.80 miles to the northwest of the Site with a depth to water of 140 feet and a total depth of 490 feet bgs. The nearest significant watercourse is a first-order tributary to Armenta Canyon approximately 35 feet north of the Site. Armenta Canyon is approximately 150 feet east of the Site (Figure 3). No impact to surface water has been identified.

1.4 INITIAL RESPONSE

Approximately 2,700 cubic feet of soil was excavated during pipeline repairs, which were conducted immediately following release identification in June 2017. The soil surrounding the leak area was suspected of petroleum hydrocarbon impacts due to its dark color and organic odor, but analytical results from initial soil sampling indicated no presence of benzene, toluene, ethylbenzene, and total xylenes (BTEX), total petroleum hydrocarbons (TPH), or chloride. The dark color and organic odor were likely a result of the rich organic material decomposing in the shallow saturated soil on the banks of Armenta Canyon. Analytical results from the initial soil sample are included in Appendix A.

Shallow groundwater infiltrated the repair excavation at approximately 6 feet bgs and the NMOCD requested a groundwater sample be collected. Prior to backfilling the excavated area, a section of 0.01-inch slotted 2-inch diameter polyvinyl chloride (PVC) pipe was installed using a backhoe into the native saturated soil at approximately 7 feet bgs as a temporary groundwater collection point (MW-1). The temporary monitoring well was installed to a total depth beneath the depth of the pipeline at approximately 4 feet bgs. The native soil surrounding the temporary monitoring well consisted of a fine, silty sand that allows for groundwater infiltration into the slotted PVC pipe. The location of the excavation and MW-1 are depicted on Figure 2.

1.5 INITIAL REMEDIATION ACTIVITIES

On October 20, 2017, WSP (formerly LT Environmental, Inc.) personnel were on site to collect a grab sample of the groundwater from MW-1, (sample name Lat L-2) in the presence of NMOCD personnel. Laboratory analytical results indicated the groundwater sample contained a concentration of 39 micrograms per liter (μ g/L) of benzene and 4.3 μ g/L of toluene. Ethylbenzene or total xylenes were not detected in groundwater at concentrations above the laboratory reporting limits. Due to the elevated benzene concentration, which exceeded the New Mexico Water Quality Control Commission (NMWQCC) standard of 10 μ g/L (and currently standard of 5 μ g/L), the NMOCD requested Williams conduct additional groundwater sampling to laterally define the extent of impact to groundwater. Williams proposed installing additional temporary groundwater monitoring wells within the existing pipeline right-of-way prior to requesting additional surface access from the BLM in an effort to expedite the groundwater delineation events.

2 GROUNDWATER SITE INVESTIGATION

2.1 TEMPORARY MONITORING WELL INSTALLATION

On January 31, 2018, a subsurface soil investigation was conducted via hand auger and four additional temporary monitoring wells (MW-2, MW-3, MW-4, and MW-5) were installed into the exploratory boreholes for further groundwater investigation. A WSP geologist observed an unconsolidated medium-grained light brown sand from the ground surface to approximately 4 feet bgs. Dark, organic material was encountered in the soil vadose zone at approximately 4 feet to 7 feet bgs. Samples collected from this material were field screened with a photo-ionization detector (PID) every 2 feet. Field screening results indicated subsurface soil samples did not exceed 100 parts per million (ppm) for volatile aromatic hydrocarbons; therefore, no soil samples were submitted for laboratory analysis. The boreholes were completed as temporary groundwater monitoring points by clearing any remaining soil cuttings and advancing the hand auger as deep into the groundwater table as possible before the saturated sidewalls composed of sand collapsed. A 1-inch diameter 0.01-inch slotted PVC pipe with a silica sand pre-pack filter around the screened interval was installed in the open borehole. The annulus between the riser and borehole was backfilled with native material. Groundwater was observed at approximately 6 feet bgs. Soil boring and temporary monitoring well installation/completion boring logs are included as Appendix B.

On February 7, 2018, WSP personnel were on site to develop and purge the four new temporary monitoring wells prior to sampling. Depth to groundwater was measured in each well and a total purge volume of 10 well casing volumes was calculated. Purge water was collected using a peristaltic pump and dedicated tubing until 10 well casing volumes were removed or the well ran dry. Purge water was collected and disposed of at a nearby Williams gathering facility.

2.2 GROUNDWATER SAMPLING

On March 8, 2018, WSP personnel were on site to sample groundwater from temporary monitoring wells MW-1 through MW-5. Prior to sampling, depth to groundwater and the total depth of the monitoring wells were measured using a Keck oil/water interface probe. The depth to water and the total depth of each monitoring well were used to calculate three well casing volumes to be purged from each monitoring well. The Keck oil/water interface probe was decontaminated with Alconox[™] soap and rinsed with distilled water prior to each measurement to prevent cross contamination.

As groundwater was purged from the monitoring wells, field parameters including pH, electrical conductivity (EC), and temperature were recorded. Purging continued until three well casing volumes were removed or the parameters stabilized indicating the purge water was representative of existing aquifer conditions, or the well flowed dry. Stabilization was defined as three consecutive stable readings for each water parameter (plus or minus $[\pm] 0.4$ units for pH, ± 10 percent (%) for EC, and ± 2 degrees [°] Celsius for temperature). Once each monitoring well was properly purged, groundwater samples were collected in the appropriate sample bottles.

Groundwater samples were labeled with the date and time of sample collection, well designation, project name, collector's name, and parameters to be analyzed and were immediately sealed and stored on ice. The samples were hand delivered to Hall Environmental Analysis Laboratory (Hall) of Albuquerque, New Mexico, for analysis volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method 8260. Samples were maintained under strict chain-of-custody (COC) protocol documenting the date and time of sample collection, time and date of sample transfer, sample designation, type of sample, sampler's name, applicable preservative, and analyses required. Signatures of the sampler, courier, and laboratory are included to document the custody transfer. A blind field duplicate sample, MW-A, was collected from monitoring well MW-5.

2.3 ADDITIONAL MONITORING WELL INSTALLATION

On April 27, 2018, WSP personnel returned to the Site to conduct groundwater monitoring on existing temporary monitoring wells and to install two additional temporary monitoring wells (MW-6 and MW-7) via hand auger into exploratory boreholes for further groundwater investigation. Light brown sand and the presence of an underlying

lean clay were encountered in the soil vadose zone and samples collected from this material were screened with a PID. No field screening results of volatile aromatic hydrocarbons exceeded 100 ppm, therefore no soil samples were submitted for laboratory analysis. The open boreholes were completed as temporary groundwater monitoring points in the same manner as previously described. A self-leveling laser level was used on the top of casing and a Trimble global positioning system (GPS) to survey each temporary monitoring well. Soil boring and temporary monitoring well installation completion logs are included in Appendix B. The location of all temporary monitoring wells is shown on Figure 2.

2.4 ADDITIONAL DELINEATION

On December 9, 2021, the BLM – Farmington Field Office sent an email approval for installing and sampling four hydropunch points, which are manually driven temporary stainless-steel piezometers used in shallow groundwater zones, located outside of the existing Harvest pipeline right-of-way, per casual use as defined in Part 43 of the Code of Federal Regulations (CFR) 2804.9. On January 12, 2022, WSP personnel returned to the Site for additional delineation of groundwater impacts outside of the pipeline right-of-way. The hydropunch points were used to collect samples. The hydropunch points were installed using a hollow stem auger (HSA) with a 14-inch mesh screen attached that is driven from ground surface to the shallow groundwater table. Groundwater is then sampled with a peristaltic pump and disposable poly tubing through the HSA and screen assembly. The hydropunch is removed after sampling and decontaminated thoroughly between borehole locations. Hydropunch boring locations HP01 and HP04 were collected adjacent to MW-1 and MW-4, respectively. The four hydropunch boring locations were collected outside of the pipeline right-of-way to delineate previous impacts identified in monitoring wells MW-2 and MW-5. Hydropunch locations are depicted on Figure 2.

Groundwater samples were collected by low-flow sampling methods with a peristaltic pump. As water was removed from the monitoring well groundwater was monitored for pH, EC, and temperature. Monitoring wells were purged until groundwater parameters in each well stabilized as described in prior sections or until the well bailed dry. Groundwater samples were collected and sent to Hall as described in previous sections.

2.5 ANALYTICAL RESULTS

Laboratory analytical results from the initial groundwater sampling event in October 2017 from monitoring well MW-01 indicated elevated benzene concentration of 39 μ g/L in groundwater within the excavation. Subsequent sampling events had elevated concentrations of benzene in monitoring wells MW-1 and MW-5 in March 2018, and monitoring wells MW-1, MW-2, and MW-5 in April 2018 and December 2019. Laboratory analytical data is presented in Table 2.

Laboratory analytical results from the sampling event conducted in March 2018 indicated benzene concentrations of 18 µg/L and 210 µg/L in monitoring wells MW-1 and MW-5, respectively. No other analytes or monitoring wells exceeded the NMWQCC standards. Due to benzene concentrations exceeding the NMWQCC standard, the NMOCD requested Williams conduct additional monitoring well installation and groundwater sampling to laterally define the extent of impact to groundwater. Williams proposed additional temporary monitoring wells be installed within the existing pipeline right-of-way due to issues getting surface access from the BLM.

Laboratory analytical results from April 27, 2018, indicated all VOC concentrations in temporary monitoring wells MW-3, MW-4, MW-6, and MW-7 were below laboratory detection limits or compliant with the NMWQCC groundwater standards. The benzene concentration in temporary monitoring wells MW-1, MW-2, and MW-5 exceeded the NMWQCC standard of 5 μ g/L of benzene with concentrations of 200 μ g/L, 170 μ g/L, and 190 μ g/L, respectively. Sample MW-A had a concentration of 200 μ g/L as a blind field duplicate for temporary monitoring well MW-5, which is within 5 % error.

The groundwater sampling events were submitted to the NMOCD in a Stage 1 Abatement Plan on December 28, 2018; however, no response was received from the NMOCD to approve or acknowledge the Stage 1 Abatement Plan within 60 days of submittal per Title 19, Chapter 15, Part 30, Section 16 (19.15.30.16) of the New Mexico Administrative Code (NMAC).

A subsequent groundwater sampling event in December 2021 was conducted to monitor groundwater impact concentrations and determine if impacts were migrating. Laboratory analytical results during the December 2021 groundwater sampling event indicated benzene concentrations in MW-2, MW-3, MW-5, MW-6, and MW-7 did not

exceed the NMWQCC standard. All samples collected during the December 2021 sampling event were below laboratory reporting limits. Samples were not collected from MW-1 and MW-4 during the December 2021 sampling event due to damage to the wells.

Harvest received approval per casual use from the BLM and opted to conduct another monitoring event and proceed with additional delineation even though NMOCD had not commented on the Stage 1 Abatement Plan. In January 2022, groundwater samples HP01 through HP06 were collected with hydropunch points. Laboratory analytical results for all samples were below the laboratory detection limit and in compliance with NMWQCC standards. The groundwater analytical results for the December 2021 and January 2022 sampling events as compared to the NMWQCC standards are presented on Figure 2 and summarized in Table 2. The laboratory analytical reports are included in Appendix A.

2.6 CONCLUSIONS

Soil excavated from the area of the July 20217 release remediated the majority of impacts to soil and minimized additional vertical migration of petroleum hydrocarbons to impact groundwater to a greater extent. This is evident by the initial excavation soil analytical results and no PID readings above 100 ppm all boreholes during the installation of temporary monitoring wells. Previously observed elevated benzene concentrations in groundwater have since diminished to below NMWQCC standards. Therefore, continued quarterly groundwater monitoring until eight consecutive quarters of compliance with NMWQCC standards are achieved in lieu of submitting a Stage 2 Abatement Plan appears to be the appropriate path toward Site closure. As no impacts to groundwater currently exist, a remediation proposal does not appear necessary at this time. If contaminant concentrations rebound and exceed NMWQCC standards, a remediation alternative may be proposed in a Stage 2 Abatement Plan per NMAC 19.15.30.

2.7 QUALITY ASSURANCE

Sampling and analytical techniques have been identified in the text above and conform with the references identified in Subsection B of 20.6.2.3107 NMAC and with 20.6.4.14 NMAC of the water quality standards for interstate and intrastate surface waters in New Mexico.

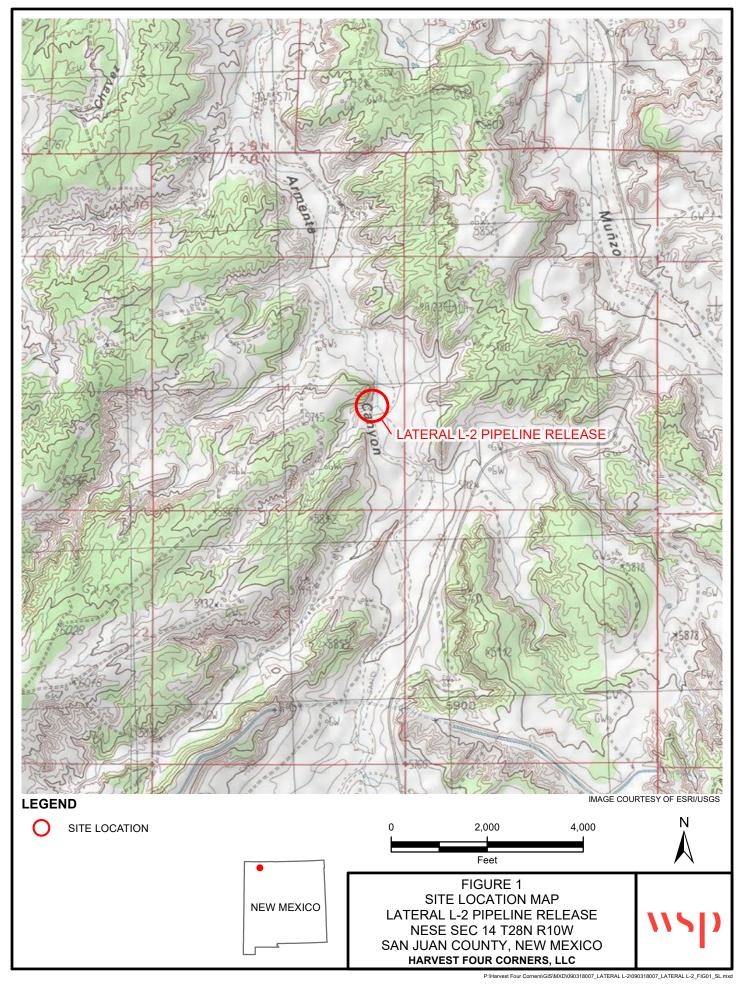
3 RECOMMENDATIONS

3.1 PROPOSED GROUNDWATER MONITORING

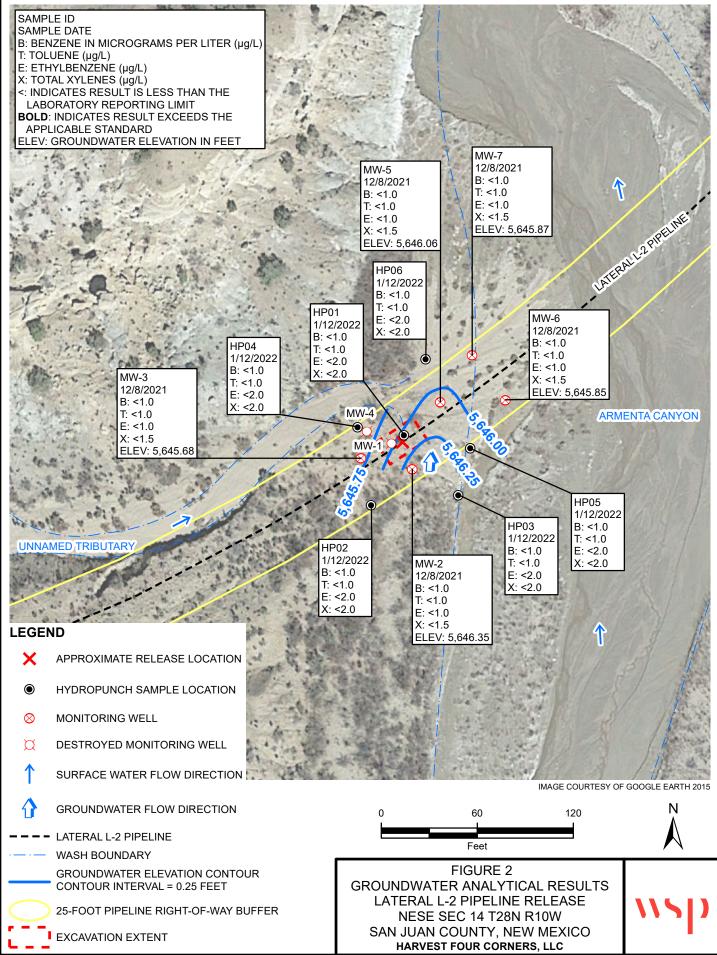
WSP proposes quarterly groundwater monitoring at the Site beginning within 60 days of receipt of approval from the NMOCD of this Revised Stage 1 Abatement Plan. Fluid-level measurements will be monitored in all temporary monitoring wells using an oil/water interface probe. Each well will be purged of three well casing volumes or until the well is purged dry. Temporary monitoring wells containing sufficient groundwater will be sampled and submitted for laboratory analysis of BTEX by USEPA 8021.

3.2 PROPOSED SCHEDULE

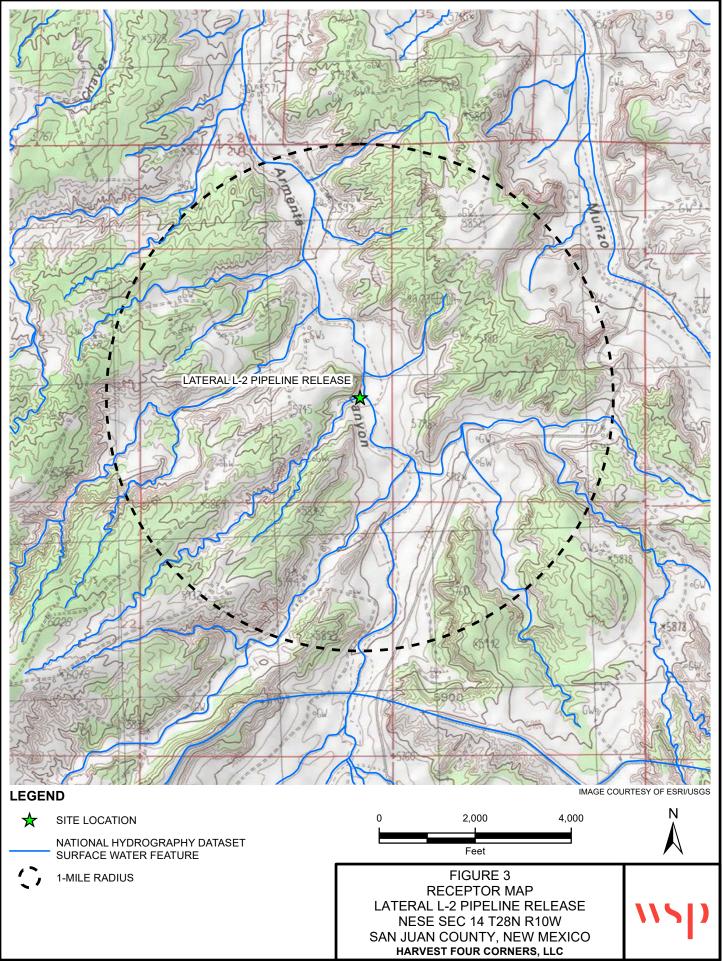
WSP will continue groundwater sampling the Site on a quarterly basis until eight consecutive quarters of compliance with NMWQCC standards is achieved. If impacts to groundwater exceeding NMWQCC standards are observed consistently (subsequent quarterly events with concentrations exceeding NMWQCC standards by 10 %), a Stage 2 Abatement Plan with remediation options for review from the NMOCD will be submitted.


WSP appreciates the opportunity to provide this report to the NMOCD. If you have any questions or comments regarding this Revised Stage 1 Abatement Plan, do not hesitate to contact Ms. Brooke Herb at (970) 385-1096 or via email at <u>brooke.herb@WSP.com</u> or Ms. Monica Smith at (505)-632-4475 or via email at <u>msmith@harvestmidstream.com</u>.

BIBLIOGRAPHY


 Stone, W.J., Lyford, F.P., Frenzel, P.F., Mizell, N.H., and Padgett, E.T., 1983, Hydrogeology and Water Resources of the San Juan Basin, New Mexico, New Mexico Bureau of Mines and Mineral Resources Hydrologic Report 6, 70 p.

.



Released to Imaging: 11/5/2024 1:18:12 PM

Released to Imaging: 11/5/2024 1:18:12 PM

Released to Imaging: 11/5/2024 1:18:12 PM

TABLE 1GROUNDWATER ELEVATION SUMMARY

LATERAL L-2 PIPELINE RELEASE SAN JUAN COUNTY, NEW MEXICO HARVEST FOUR CORNERS, LLC

Well Name	Date	Top of Casing Elevation (feet)	Total Depth (feet BTOC)	Depth to Groundwater (feet BTOC)	Groundwater Elevation (feet)	
	10/20/2017		9.08	7.10	5,646.22	
	1/31/2018		9.08	6.65	5,646.67	
MW-1	3/8/2018	5,653.32	9.05	6.60	5,646.72	
1 v1 vv - 1	4/27/2018	5,055.52	9.05	6.63	5,646.69	
	12/17/2019		9.00	7.85	5,645.47	
	12/8/2021		Dest.	Dest.	Dest.	
	1/31/2017		10.18	7.00	5,647.53	
	3/8/2018		10.18	7.00	5,647.53	
MW-2	4/27/2018	5,654.53	10.19	7.91	5,646.62	
	12/17/2019		10.19	8.97	5,645.56	
	12/8/2021		10.15	8.18	5,646.35	
	3/8/2018		10.18	7.71	5,646.10	
MW-3	4/27/2018	5,653.81	10.19	7.09	5,646.72	
IVI VV - 3	12/17/2019	5,055.81	10.19	8.22	5,645.59	
	12/8/2021		10.15	8.13	5,645.68	
	3/8/2018		10.15	7.58	5,646.84	
MW-4	4/27/2018	5,654.42	10.18	7.81	5,646.61	
101 00 -4	12/17/2019	5,054.42	10.15	8.90	5,645.52	
	12/8/2021		Dest.	Dest.	Dest.	
	3/8/2018		10.15	7.70	5,646.32	
MW-5	4/27/2018	5,654.02	10.17	7.75	5,646.27	
101 00 -3	12/17/2019	5,054.02	10.15	8.65	5,645.37	
	12/8/2021		10.15	7.96	5,646.06	
	4/27/2018		10.18	7.42	5,646.11	
MW-6	12/17/2019	5,653.53	10.17	8.35	5,645.18	
	12/8/2021		10.15	7.68	5,645.85	
	4/27/2018		10.18	7.42	5,646.11	
MW-7	12/17/2019	5,653.53	10.15	8.35	5,645.18	
	12/8/2021		10.15	7.66	5,645.87	

Notes:

BTOC - below top of casing Dest. - Destroyed

TABLE 2 GROUNDWATER LABORATORY ANALYTICAL RESULTS

LATERAL L-2 PIPELINE RELEASE SAN JUAN COUNTY, NEW MEXICO HARVEST FOUR CORNERS LLC

Well Name	Sample Date	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX
wen reame	^	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
	10/20/2017	39	4.3	<2.5	<5.0	43.3
MW-1	3/8/2018	18	<1.0	<1.0	<1.5	18
101 00 - 1	4/27/2018	200	<1.0	5.2	8.7	213.9
	12/17/2019	260	12	12	87	371
HP01	1/12/2022	<1.0	<1.0	<10	<2.0	<2.0
	3/8/2018	<1.0	<1.0	<1.0	<1.5	<1.5
MW-2	4/27/2018	170	33	11	76	290
IVI VV -2	12/17/2019	230	<1.0	1.4	11	242.4
	12/8/2021	<1.0	<1.0	<1.0	<1.5	<1.5
	3/8/2018	<1.0	<1.0	<1.0	<1.5	<1.5
MW-3	4/27/2018	<1.0	<1.0	<1.0	<1.5	<1.5
IVI VV - 3	12/17/2019	<1.0	<1.0	<1.0	<2.0	<2.0
	12/8/2021	<1.0	<1.0	<1.0	<1.5	<1.5
	3/8/2018	1.6	<1.0	<1.0	5.4	7.0
MW-4	4/27/2018	<1.0	<1.0	<1.0	<1.5	<1.5
	12/17/2019	3.6	<1.0	<1.0	<2.0	3.6
HP04	1/12/2022	<1.0	<1.0	<1.0	<2.0	<2.0
	3/8/2018	210	110	2.7	70	392.7
MW-5	4/27/2018	190	<1.0	5.7	9.1	204.8
IVI VV - 3	12/17/2019	140	1.1	<1.0	7.7	148.8
	12/8/2021	<1.0	<1.0	<1.0	<1.5	<1.5
	4/27/2018	<1.0	<1.0	<1.0	<1.5	<1.5
MW-6	12/17/2019	<1.0	<1.0	<1.0	<2.0	<2.0
	12/8/2021	<1.0	<1.0	<1.0	<1.5	<1.5
	4/27/2018	<1.0	<1.0	<1.0	<1.5	<1.5
MW-7	12/17/2019	<1.0	<1.0	<1.0	<2.0	<2.0
	12/8/2021	<1.0	<1.0	<1.0	<1.5	<1.5
MW-A	3/8/2018	210	120	3.7	69	402.7
IVI W -A	4/27/2018	200	<1.0	6.0	9.4	215.4

TABLE 2 GROUNDWATER LABORATORY ANALYTICAL RESULTS

LATERAL L-2 PIPELINE RELEASE SAN JUAN COUNTY, NEW MEXICO HARVEST FOUR CORNERS LLC

Well Name	Sample Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	Total BTEX (µg/L)
HP02	1/12/2022	<1.0	<1.0	<1.0	<2.0	<2.0
HP03	1/12/2022	<1.0	<1.0	<1.0	<2.0	<2.0
HP05	1/12/2022	<1.0	<1.0	<1.0	<2.0	<2.0
HP06	1/12/2022	<1.0	<1.0	<1.0	<2.0	<2.0
NMWQCC Standard		5	1,000	700	620	NA

Notes:

BTEX - Benzene, Toluene, Ethylbenzene, and Total Xylenes

 μ g/L - microgram per liter

Released to Imaging: 11/5/2024 1:18:12 PM

NA - Not applicable

NMWQCC - New Mexico Water Quality Control Commission

< - indicates result is below laboratory reporting limit

BOLD indicates result exceeds applicable standard

"MW-A" used as blind field duplicate for monitoring well MW-5

APPENDIX A: LABORATORY ANALYTICAL REPORTS

August 01, 2017

Kijun Hong Williams Four Corners 188 CR 4900 Bloomfield, NM 87413 TEL: (505) 632-4442 FAX

RE: Lat L-2

OrderNo.: 1707E89

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

Dear Kijun Hong:

Hall Environmental Analysis Laboratory received 1 sample(s) on 7/29/2017 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report

Lab Order 1707E89 Date Reported: 8/1/2017

CLIENT: V	Villiams Four Corners	(Client Sample ID: Lat L-2 Sidewalls
Project: L	at L-2		Collection Date: 7/27/2017 3:45:00 PM
Lab ID: 1	707E89-001	Matrix: MEOH (SOIL)	Received Date: 7/29/2017 9:35:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	MRA
Chloride	ND	30	mg/Kg	20	7/31/2017 12:02:02 PM	33090
EPA METHOD 8015M/D: DIESEL RAN	IGE ORGANIC	S			Analyst	ТОМ
Diesel Range Organics (DRO)	ND	9.2	mg/Kg	1	7/31/2017 10:12:15 AM	33085
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	7/31/2017 10:12:15 AM	33085
Surr: DNOP	92.5	70-130	%Rec	1	7/31/2017 10:12:15 AM	33085
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	3.3	mg/Kg	1	7/31/2017 11:57:11 AM	G44614
Surr: BFB	104	54-150	%Rec	1	7/31/2017 11:57:11 AM	G44614
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.016	mg/Kg	1	7/31/2017 11:57:11 AM	B44614
Toluene	ND	0.033	mg/Kg	1	7/31/2017 11:57:11 AM	B44614
Ethylbenzene	ND	0.033	mg/Kg	1	7/31/2017 11:57:11 AM	B44614
Xylenes, Total	ND	0.066	mg/Kg	1	7/31/2017 11:57:11 AM	B44614
Surr: 4-Bromofluorobenzene	113	66.6-132	%Rec	1	7/31/2017 11:57:11 AM	B44614

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix
- D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 1 of 5 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Client: Project:	Williams Lat L-2	Four Corners							
Sample ID	MB-33090	SampType:	MBLK	Tes	tCode: EPA Method	1 300.0: Anion	s		
Client ID:	PBS	Batch ID:	33090	F	RunNo: 44609				
Prep Date:	7/31/2017	Analysis Date:	7/31/2017	S	SeqNo: 1411294	Units: mg/K	g		
Analyte		Result PQ	L SPK value	SPK Ref Val	%REC LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND 1	.5						
Sample ID	LCS-33090	SampType:	LCS	Tes	tCode: EPA Method	1 300.0: Anion	s		
Client ID:	LCSS	Batch ID:	33090	F	RunNo: 44609				
Prep Date:	7/31/2017	Analysis Date:	7/31/2017	S	SeqNo: 1411295	Units: mg/K	g		
Analyte		Result PQ	L SPK value	SPK Ref Val	%REC LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14 1	.5 15.00	0	94.3 90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1707E89

01-Aug-17

WO#:

Page 2 of 5

Client:	Williams	Four Corne	ers								
Project:	Lat L-2										
Sample ID	LCS-33085	SampTy	/pe: LC	S	Tes	tCode: El	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID:	LCSS	Batch	ID: 33	085	F	RunNo: 44603					
Prep Date:	7/31/2017	Analysis Da	ate: 7 /	31/2017	S	SeqNo: 14	409986	Units: mg/Kg			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range (Organics (DRO)	39	10	50.00	0	78.5	73.2	114			
Surr: DNOP		3.6		5.000		73.0	70	130			
Sample ID	MB-33085	SampTy	/pe: ME	BLK	Tes	tCode: El	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID:	PBS	Batch	ID: 33	085	F	RunNo: 4	4603				
Prep Date:	7/31/2017	Analysis Da	ate: 7/	31/2017	S	SeqNo: 14	409987	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
-	Organics (DRO)	ND	10								
	e Organics (MRO)	ND	50								
Surr: DNOP		7.6		10.00		76.4	70	130			
Sample ID	LCS-33075	SampTy	/pe: LC	s	Tes	tCode: El	PA Method	8015M/D: Die	esel Rang	e Organics	
Client ID:	LCSS	Batch	ID: 33	075	F	RunNo: 4	4604				
Prep Date:	7/28/2017	Analysis Da	ate: 7/	31/2017	S	SeqNo: 14	410830	Units: %Rec	;		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP		4.4		5.000		87.2	70	130			
Sample ID	MB-33075	SampTy	/pe: ME	BLK	Tes	tCode: El	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID:	PBS	Batch	ID: 33	075	F	RunNo: 4	4604				
Prep Date:	7/28/2017	Analysis Da	ate: 7/	31/2017	S	SeqNo: 14	410831	Units: %Rec	;		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP		8.5		10.00		85.3	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- Reporting Detection Limit RL
 - Sample container temperature is out of limit as specified

1707E89

01-Aug-17

WO#:

Value above quantitation range

- Released to Imaging: 11/5/2024 1:18:12 PM
- PQL
- W

Page 3 of 5

Client:WilliaProject:Lat L-	ums Four Corr -2	ners								
Sample ID RB	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8015D: Gasc	line Rang	e	
Client ID: PBS	Batch	n ID: G4	4614	F	RunNo: 44614					
Prep Date:	31/2017	5	SeqNo: 1	410728	Units: mg/K	g				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND	5.0								
Surr: BFB	1000		1000		104	54	150			
Sample ID 2.5UG GRO LO	CS SampT	ype: LC	s	Tes	tCode: El	PA Method	8015D: Gasc	line Rang	e	
Client ID: LCSS	Batch	n ID: G4	4614	F	RunNo: 4	4614				
Prep Date:	Analysis D	Date: 7/	31/2017	S	SeqNo: 1	410729	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	24	5.0	25.00	0	95.2	76.4	125			
Surr: BFB	1100		1000		113	54	150			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Released to Imaging: 11/5/2024 1:18:12 PM

- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1707E89

01-Aug-17

WO#:

Page 4 of 5

pH Not In Range

	/illiams Four Co at L-2	rners									
Sample ID RB	Samp	Type: ME	BLK	TestCode: EPA Method 8021B: Volatiles							
Client ID: PBS	Bate	ch ID: B4	4614	F							
Prep Date:	Analysis	Date: 7/	31/2017	S	SeqNo: 1	410736	Units: mg/Kg				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	ND	0.025									
Toluene	ND	0.050									
Ethylbenzene	ND	0.050									
Xylenes, Total	ND	0.10									
Surr: 4-Bromofluorobenze	ne 1.2		1.000		115	66.6	132				
Sample ID 100NG BI	EX LCS Samp	Type: LC	s	Tes	tCode: El	PA Method	8021B: Vola	tiles			
Client ID: LCSS	Bate	ch ID: B4	4614	F	RunNo: 4	4614					
Prep Date:	Analysis	Date: 7/	31/2017	S	SeqNo: 1	410737	Units: mg/k	٨g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	0.90	0.025	1.000	0	90.3	80	120				
Toluene	0.90	0.050	1.000	0	90.0	80	120				
Ethylbenzene	0.93	0.050	1.000	0	93.0	80	120				
Xylenes, Total	2.8	0.10	3.000	0	93.6	80	120				
Surr: 4-Bromofluorobenze	ne 1.2		1.000		120	66.6	132				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Released to Imaging: 11/5/2024 1:18:12 PM

- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1707E89

01-Aug-17

WO#:

Page 5 of 5

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental Albu Albu TEL: 505-345-3975 Website: www.hal	4901 Hawkins i querque, NM 871 FAX: 505-345-41	ve 09 Sam 07	ple Log-In Check List
Client Name: WILLIAMS FOUR CORN	Work Order Number:	1707E89		RcptNo: 1
Received By: Ashley Gallegos	7/29/2017 9:35:00 AM		AZ	
Completed By: Ashley Gallegos	7/30/2017 2:49:47 PM		A	
Reviewed By:	7 31 7		(J	
Chain of Custody	ſ			
1. Custody seals intact on sample bottles?		Yes	No 🗌	Not Present 🗹
2. Is Chain of Custody complete?		Yes 🗹	No 🗔	Not Present
3. How was the sample delivered?		Courier		
<u>Log In</u>				
4. Was an attempt made to cool the sample	es?	Yes 🗹	No 🗌	
5. Were all samples received at a temperate	ure of >0° C to 6.0°C	Yes 🗹	No 🗌	NA
6. Sample(s) in proper container(s)?		Yes 🗹	No 🗆	
7. Sufficient sample volume for indicated test	st(s)?	Yes 🗹	No 🗌	
8. Are samples (except VOA and ONG) prop	perly preserved?	Yes 🗹	No 📋	
9. Was preservative added to bottles?		Yes 🗌	No 🗹	NA 🗌
10.VOA vials have zero headspace?		Yes 🗌	No 🗌	No VOA Vials 🗹
11. Were any sample containers received br	oken?	Yes 🗆	No 🗹	# of preserved
12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Yes 🔽	No 🗌	bottles checked for pH: (<2 or >12 unless noted)
13. Are matrices correctly identified on Chain	of Custody?	Yes 🗹	No 🗌	Adjusted?
14. Is it clear what analyses were requested?		Yes 🗹	No 🗌	
15. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes 🗹	No 🗌	Checked by:
Special Handling (if applicable)				

16.V	Vas client notified of all d	iscrepancies with this order?	Yes 🗌	No 🗌	NA 🗹
	Person Notified:		Date	n an de ser anne an	
;	By Whom:	and and a second se	Via: 📋 eMail 🔲 Pł	none 🗌 Fax 🗌	In Person
į	Regarding:	************	****		
	Client Instructions:	n. Ma Aleks in Martinet Rocks neuroda and a deve second and a second device bandwards. It is a second second s			A TANDAR MANAGEMENT AND AND AND AND AND
17.	Additional remarks:				· ·- · · · · · · · · · · · · · · · · ·
18. 0	Cooler Information				

-...-

•

	lauon					
Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	3.8	Good	Yes			
• • • • • • • • • • • • • • • • • • • •				· · · · · · · · · · · · · · · · · · ·		a second second second

Page 1 of 1

	HALL ENVIKUNMENTAL ANALYSIS LABORATORY		60						1)	Dr 1	(۸ (م م	Selddu Bubbles									alytical report.
		E	4901 Hawkins NE - Albuquerque, NM 87109	505-345-4107	-					(4		-imə2) 0728						 			the an
(Ç ₹	www.hallenvironmental.com	le, N	-345	Analysis Request							40V) 80928	_								ated or
		men	nerqu	505	s Rec							3081 Pestic					 _	 			arty not
		Niror	Ibnd	Fax	lysis	(*C	DS'*	04	^{'2} 0N			O, A) anoin/					 -+				be clea
	╧╘	aller	4 -	ß	Ana		(6		2.07			9168) <i>a</i> 'HA ^c 900 8 A907						 			ata wilt
			s NE	-397			(5	- VIIC				DB (Metho				 	-				S S Cted d
		3	wkin	Tel. 505-345-3975												 	 	 			b-contracted di D935
			H Ha	1. 505		(0)	WE	02	JD /	05	(Gl	88108 H91		}				 -			lans var
			490	Tel		(í ļu	io si	вÐ)	Hd	+	ЗB	TM + XƏTE	1						Remarks:		20
						(120	8) s	-am	1+	, 38	TEX + N									his possibility. Any su 07/29/17
san edet									Ford	No	3.5+0.2((5):3.8	HEAL NO. 1707E89	100-						Date Time 7/28/pr 7:00 As	7 Date Time	Adding as notice of t
Time:	E Rush		۲-2			iger:		HONG	usty F	AT Yes	Temperature: 3	Preservative Type							Killia	Jat	er accredited laboratories
Turn-Around Time:	□ Standard	Project Name:	107.	Project #:		Project Mana		KIUN	Sampler: 🗶	On Ice:	Sample Tem	Container Type and #	1 - 402						Received by:	Received by:	Bed to oth
Chain-of-Custody Record	155		188 CK4900	BloomF; cld Nn 82 Yol	Phone #: 505-63 4475	email or Fax#: KiJ un . How F @ williars . Con Project Manager.	ckage:	ard	tion	Other	Type)	Time Matrix Sample Request ID	3:4550% 1 25t 652115						Time: Relinquished by:	me: Relinquistrad by: No Mory Zilleon	7/2/10 1633 (h. H. C. C. M. C.
ĊŸ	Client:		Mailing Address:	8100	Phone #:	email or Fa	QA/QC Package:	□ Standard	Accreditation		🗆 EDD (Type)	Date	1/14 3	-			 		Date: Tin 7/28//7	Date: Time:	They have

-

Received by OCD: 3/23/2022 11:04:47 AM

November 01, 2017

Danny Burns Williams Four Corners 188 CR 4900 Bloomfield, NM 87413 TEL: (505) 632-4442 FAX Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

RE: Lateral L 2

OrderNo.: 1710B82

Dear Danny Burns:

Hall Environmental Analysis Laboratory received 1 sample(s) on 10/21/2017 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Project:

Lab ID:

CLIENT: Williams Four Corners

1710B82-001

Lateral L 2

Analytical Report
Lab Order 1710B82

Hall Environmental	Analysis	Laboratory, Inc.
--------------------	----------	------------------

Date Reported: 11/1/2017

	C	lient Sample ID	: Lat L-2	
		Collection Date	: 10/20/2017 10:00:00 AM	
Matrix:	AQUEOUS	Received Date:	: 10/21/2017 11:15:00 AM	-
Result	POL Qual	Units	DF Date Analyzed	Batch

Analyses	Result	PQL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260: VOLATILES SI	HORT LIST					Analys	st: RAA
Benzene	39	2.5	D	µg/L	5	10/30/2017 1:01:00 PM	M SL46753
Toluene	4.3	2.5	D	µg/L	5	10/30/2017 1:01:00 PM	M SL46753
Ethylbenzene	ND	2.5	D	µg/L	5	10/30/2017 1:01:00 PM	M SL46753
Xylenes, Total	ND	5.0	D	µg/L	5	10/30/2017 1:01:00 PM	M SL46753
Surr: 1,2-Dichloroethane-d4	103	70-130	D	%Rec	5	10/30/2017 1:01:00 PM	M SL46753
Surr: 4-Bromofluorobenzene	101	70-130	D	%Rec	5	10/30/2017 1:01:00 PM	M SL46753
Surr: Dibromofluoromethane	103	70-130	D	%Rec	5	10/30/2017 1:01:00 PM	M SL46753
Surr: Toluene-d8	99.7	70-130	D	%Rec	5	10/30/2017 1:01:00 PM	M SL46753

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 2
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Client: William Project: Lateral	ns Four Corn L 2	iers								
Sample ID rb	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8260: Volatile	es Short I	_ist	
Client ID: PBW	Batch	ID: SL	46694	R	RunNo: 4	6694				
Prep Date:	Analysis D	ate: 10	0/27/2017	SeqNo: 1487911			Units: %Rec			
	-									- ·
Analyte	Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	10		10.00		103	70	130			
Surr: 4-Bromofluorobenzene	9.9		10.00		98.9	70	130			
Surr: Dibromofluoromethane	10		10.00		102	70	130			
Surr: Toluene-d8	10		10.00		100	70	130			
Sample ID 100ng Ics	SampT	ype: LC	s	Tes	tCode: El	PA Method	8260: Volatile	es Short I	_ist	
Client ID: LCSW	Batch	ID: SL	.46753	R	RunNo: 4	6753				
Prep Date:	Analysis D	ate: 10	0/30/2017	S	SeqNo: 1	489945	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	94.8	70	130			
Toluene	19	1.0	20.00	0	92.6	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		100	70	130			
Surr: 4-Bromofluorobenzene	9.7		10.00		96.9	70	130			
Surr: Dibromofluoromethane	10		10.00		103	70	130			
Surr: Toluene-d8	9.8		10.00		98.3	70	130			
Sample ID RB	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8260: Volatile	es Short I	_ist	
Client ID: PBW	Batch	ID: SL	.46753	R	unNo: 4	6753				
Prep Date:	Analysis D	ate: 10	0/30/2017	S	SeqNo: 1	490338	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	10		10.00		101	70	130			
Surr: 4-Bromofluorobenzene	9.7		10.00		97.5	70	130			
Surr: Dibromofluoromethane	10		10.00		104	70	130			
Surr: Toluene-d8	9.7		10.00		97.1	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 2 of 2

WO#: 1710B82

Released to Imaging: 11/5/2024 1:18:12 PM

.

HALL ENVIRONMENTAL ANALYSIS LABORATORY		4901 Hawk herque, NM 1X: 505-345	ns NE 87109 Samp -4107	Sample Log-In Check List						
Client Name: WILLIAMS FOUR CORN	Work Order Number: 1	710 B82		RcptNo:	1					
Received By: John Caldwell	10/21/2017 11:15:00 AM		John Colline	K						
Completed By: Erin Melendrez	10/23/2017 9:56:47 AM		int	•						
Reviewed By: JU 10.23.17 (1347									
Chain of Custody										
1. Custody seals intact on sample bottles?	•	Yes 🗌	Νο 🗔	Not Present 🗹						
2. Is Chain of Custody complete?	· ·	Yes 🗹	No 🗌	Not Present 🗌						
3. How was the sample delivered?	<u>(</u>	<u>Courier</u>								
<u>Log In</u>										
4. Was an attempt made to cool the samples	?	Yes 🗹	No 🗌	NA						
5. Were all samples received at a temperatur	e of >0° C to 6.0°C ነ	(es 🗹	No 🗌							
6. Sample(s) in proper container(s)?		Yes 🗹	No 🗌							
7. Sufficient sample volume for indicated test	(s)?	Yes 🔽	No 🛄							
8. Are samples (except VOA and ONG) prope	erly preserved?	Yes 🔽	No 🗔							
9. Was preservative added to bottles?	•	Yes 🗌	No 🔽	NA 🗌						
10.VOA vials have zero headspace?	Ň	Yes 🗌	No 🗌	No VOA Vials 🗹						
11. Were any sample containers received brok	ken?	Yes 🗆	No 🗹 🛛	# of preserved						
12.Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Yes 🗹	No 🗍	bottles checked for pH: (<2 o	r >12 unless noted)					
13. Are matrices correctly identified on Chain of	f Custody?	Yes 🗹	No 🗌	Adjusted?						
14. Is it clear what analyses were requested?		Yes 🗹	No 🗆							
15. Were all holding times able to be met? (If no, notify customer for authorization.)	Ň	Yes 🗹	No 🗌	Checked by:						
<u>Special Handling (if applicable)</u>										

16.\	Was client notified of all d	iscrepancies with this order?	Yes 🗌	No 🗌	NA 🗹
	Person Notified:		Date:	ann gannan maranna an	
	By Whom:			ione 🗌 Fax 📋	-
	Regarding:				
:	Client Instructions:				

17. Additional remarks:

18. Cooler Information

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	3.0	Good	Not Present			

Page 1 of 1

	AALL ENVIKUNMEN AL ANALYSIS LABORATORY), N)	א כי א רי	Air Bubbles				 						direct bill	1 . 1	al report.
		www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109	1107					(∀	<u>٬</u> ٥٨	-im92) 0728					 			_		× -	5 0	Addited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report. We have: $10-21-17$ 1115
	58	NN N	345-7	lest					()	40V) 80928								1		Ê Ê Ĝ	10 M	ed on 1
	▝▁	hent:	02-02	Redu		s'80'	2 P	808 /	səp	sitesq 1808										250	<u>}</u>	/ notat
		www.hallenvironmental.com ns NE - Albuquerque. NM 8	Fax 505-345-4107	Analysis Request	(†C)S'⁺C)d'	ZON'E	л, I	O, I) enoinA) dburrselteru.com	Kijur, Honge wurdens	cleart
Ī	ī۲	Alb	ш	unaly					slet	ARCRA 8 Me										ା ମୁ <u>କ</u>	± م	will be
-		×.ha	975	4		(SV	NIS			PAH's (8310										50	J.	d data
		ww vins 1	45-3							EDB (Wetho										£.5	\prec	ntracte
-			05-3							odieM) H9T				 	 					\hat{S}		sub-co
		901	Tel. 505-345-3975							1PH 8015B			 	 		_	_	_		is: V		. Any
		4					1	`	、 、					 	 · · ·					Remarks		sibility
			1		(1208)) 5,; 		- - 77 1	(тм + (хэтв)	\bowtie		 	 		_	_	_		<u> </u>		sid y
		:								je N										Time / <i>33</i> Time	170U	This serves as notice of this パーンノーフ 11/ う
										HEAL No. 710138-2											2	ves as
						S		S N N N	Ņ	H H CUL	00									Date (らっつ-1 ⁷ 7 Date	~/c2/01	his ser
	اء	\sim				R		<u>ک</u>	Ŷ.	Sim Balance]				 			_			-	ries. T
	🗆 Rush	L-J				20	1		re: 7	Preservative Type	-										L	laborato
Turn-Around Time:		. Jo			ger:	Danny BUUS	~		Sample Temperature:	Prese	Hack	}								J.		Longedited
punc	k Standard	Project Name: Letterico	#		Project Manager:	ð		Sampler: Joff On Ice: K	Temp	ner nd #	5										4	to other a
n-Arc	Stan		Project #:		iject I			Sampler On Ice:	nple	Container Type and #	3 UOAS									Received by:	2.	<u>e</u>
Tur	<u>ب</u> کر		Pro		20			Sai On	Sai	_0 <u>≻</u>	31			 			_				-	H
Chain-of-Custody Record		Drive	87412	\	email or Fax#: Kijun . Hong @ williams.com		Level 4 (Full Validation)			Sample Request ID	L-J							1	//	X	2	If necessary, sample rubmitted to Hall Environmental may be subd
tody	11004	Four l	(, NM		Ine Q	: ר	Level 4			Sampl	04.									SX:	N/	
Sn	1	<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3eld		7.Hc			her		×	<u> </u>			 				\dashv	/	shed t		ubmitte
of-C	Lijur	LIN,	Bloomfield		Ki w	с		□ Other		Matrix	6W									Relinentished by:	Ŵ	samples
Shain-		Williams Mailing Address: 175	BL	#:	ır Fax#: ∮	QA/QC Package:	ndard	litation .AP	🗆 EDD (Type)_	Time	1000									Time: 1 1330 Time:	1/201/	If necessary, : 】ひイフ
U	Client:	Mailing		Phone #:	<u>email c</u>	QA/QC	□ Standard	Accreditation		Date	£1-0×-01									Date: [0~20 -]]	10-20-17/701	le pollo 2040

•

March 15, 2018

Danny Burns LTE 848 East 2nd Avenue Durango, CO 81301 TEL: (970) 946-1093 FAX Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

RE: Lateral L2

OrderNo.: 1803516

Dear Danny Burns:

Hall Environmental Analysis Laboratory received 6 sample(s) on 3/9/2018 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

.

Analytical Report Lab Order 1803516

Date Reported: 3/15/2018

CLIENT: LTE			Client Sample	e ID: MW-1						
Project: Lateral L2	Collection Date: 3/8/2018 1:05:00 PM									
Lab ID: 1803516-001	Matrix:	AQUEOUS	UEOUS Received Date: 3/9/2018 7:35:00 AM							
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed					
EPA METHOD 8260: VOLATILES S	HORT LIST				Analyst: AG					
Benzene	18	1.0	µg/L	1	3/13/2018 12:05:10 PM					
Toluene	ND	1.0	µg/L	1	3/13/2018 12:05:10 PM					
Ethylbenzene	ND	1.0	µg/L	1	3/13/2018 12:05:10 PM					
Xylenes, Total	ND	1.5	µg/L	1	3/13/2018 12:05:10 PM					
Surr: 4-Bromofluorobenzene	103	70-130	%Rec	1	3/13/2018 12:05:10 PM					
Surr: Toluene-d8	91.8	70-130	%Rec	1	3/13/2018 12:05:10 PM					

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: *	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
D	Sample Diluted Due to Matrix	Е	Value above quantitation range
Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 1 of 8
ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

CLIENT: LTE

.

Analytical Report Lab Order 1803516

Date Reported: 3/15/2018

Client Sample ID: MW-2

Project: Lateral L2 Lab ID: 1803516-002	Collection Date: 3/8/2018 11:35:00 AM Matrix: AQUEOUS Received Date: 3/9/2018 7:35:00 AM					
Analyses	Result	PQL Qual		DF	Date Analyzed	
EPA METHOD 8260: VOLATILES S	HORT LIST				Analyst: AG	
Benzene	ND	1.0	µg/L	1	3/13/2018 8:52:50 PM	
Toluene	ND	1.0	µg/L	1	3/13/2018 8:52:50 PM	
Ethylbenzene	ND	1.0	µg/L	1	3/13/2018 8:52:50 PM	
Xylenes, Total	ND	1.5	µg/L	1	3/13/2018 8:52:50 PM	
Surr: 4-Bromofluorobenzene	108	70-130	%Rec	1	3/13/2018 8:52:50 PM	
Surr: Toluene-d8	93.5	70-130	%Rec	1	3/13/2018 8:52:50 PM	

Qualifiers: *	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
D	Sample Diluted Due to Matrix	Е	Value above quantitation range
Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 2 of 8
ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Date Reported: 3/15/2018

CLIENT: LTE	Client Sample ID: MW-3						
Project: Lateral L2	Collection Date: 3/8/2018 12:25:00 PM						
Lab ID: 1803516-003	Matrix: AQUEOUS Received			Date: 3/9/2018 7:35:00 AM			
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed		
EPA METHOD 8260: VOLATILES S	HORT LIST				Analyst: AG		
Benzene	ND	1.0	µg/L	1	3/13/2018 9:15:45 PM		
Toluene	ND	1.0	µg/L	1	3/13/2018 9:15:45 PM		
Ethylbenzene	ND	1.0	µg/L	1	3/13/2018 9:15:45 PM		
Xylenes, Total	ND	1.5	µg/L	1	3/13/2018 9:15:45 PM		
Surr: 4-Bromofluorobenzene	108	70-130	%Rec	1	3/13/2018 9:15:45 PM		
Surr: Toluene-d8	92.7	70-130	%Rec	1	3/13/2018 9:15:45 PM		

Qualifiers: *	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
D	Sample Diluted Due to Matrix	Е	Value above quantitation range
Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 3 of 8
ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Date Reported: 3/15/2018

CLIENT: LTE	Client Sample ID: MW-4					
Project: Lateral L2	Collection Date: 3/8/2018 2:00:00 PM				18 2:00:00 PM	
Lab ID: 1803516-004	Matrix: AQUEOUS Received Da			ate: 3/9/2018 7:35:00 AM		
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	
EPA METHOD 8260: VOLATILES S	HORT LIST				Analyst: AG	
Benzene	1.6	1.0	µg/L	1	3/13/2018 9:38:40 PM	
Toluene	ND	1.0	µg/L	1	3/13/2018 9:38:40 PM	
Ethylbenzene	ND	1.0	µg/L	1	3/13/2018 9:38:40 PM	
Xylenes, Total	5.4	1.5	µg/L	1	3/13/2018 9:38:40 PM	
Surr: 4-Bromofluorobenzene	108	70-130	%Rec	1	3/13/2018 9:38:40 PM	
Surr: Toluene-d8	92.9	70-130	%Rec	1	3/13/2018 9:38:40 PM	

Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
Sample Diluted Due to Matrix	Е	Value above quantitation range
Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 4 of 8
Not Detected at the Reporting Limit	Р	Sample pH Not In Range
Practical Quanitative Limit	RL	Reporting Detection Limit
% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified
	 Sample Diluted Due to Matrix Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit L Practical Quanitative Limit 	Sample Diluted Due to MatrixEHolding times for preparation or analysis exceededJNot Detected at the Reporting LimitPLPractical Quanitative LimitRL

Date Reported: 3/15/2018

CLIENT: LTE	Client Sample ID: MW-5					
Project: Lateral L2		Collection Date: 3/8/2018 1:30:00 PM Matrix: AQUEOUS Received Date: 3/9/2018 7:35:00 AM				
Lab ID: 1803516-005	Matrix:					
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	
EPA METHOD 8260: VOLATILES S	HORT LIST				Analyst: AG	
Benzene	210	10	µg/L	10	3/14/2018 12:52:06 PM	
Toluene	110	10	µg/L	10	3/14/2018 12:52:06 PM	
Ethylbenzene	2.7	1.0	µg/L	1	3/13/2018 10:01:32 PM	
Xylenes, Total	70	1.5	µg/L	1	3/13/2018 10:01:32 PM	
Surr: 4-Bromofluorobenzene	98.0	70-130	%Rec	1	3/13/2018 10:01:32 PM	
Surr: Toluene-d8	94.6	70-130	%Rec	1	3/13/2018 10:01:32 PM	

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 5 of 8
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Date Reported: 3/15/2018

CLIENT: LTE			Client Sample	e ID: MW-A	A
Project: Lateral L2			Collection D	Date: 3/8/20	18 1:40:00 PM
Lab ID: 1803516-006	Matrix:	AQUEOUS	Received D	Date: 3/9/20	18 7:35:00 AM
Analyses	Result	PQL Qual	Units	DF	Date Analyzed
EPA METHOD 8260: VOLATILES S	HORT LIST				Analyst: AG
Benzene	210	10	µg/L	10	3/14/2018 1:15:05 PM
Toluene	120	10	µg/L	10	3/14/2018 1:15:05 PM
Ethylbenzene	3.7	1.0	µg/L	1	3/13/2018 10:24:29 PM
Xylenes, Total	69	1.5	µg/L	1	3/13/2018 10:24:29 PM
Surr: 4-Bromofluorobenzene	103	70-130	%Rec	1	3/13/2018 10:24:29 PM
Surr: Toluene-d8	92.3	70-130	%Rec	1	3/13/2018 10:24:29 PM

Qualifiers: *	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
D	Sample Diluted Due to Matrix	Е	Value above quantitation range
Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 6 of 8
ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

WO#:	1803516	

15-Mar-18

Page 42 of 102

Client: Project:	LTE Lateral L2	,									
Ū											
Sample ID 10	Ong Ics	Samp	Гуре: LC	:S4	Tes	tCode: El	PA Method	8260: Volatile	es Short L	.ist	
Client ID: Ba	atchQC	Batc	h ID: W4	49754	F	RunNo: 4	9754				
Prep Date:		Analysis [Date: 3/	13/2018	S	SeqNo: 1	610246	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		20	1.0	20.00	0	98.9	80	120			
Toluene		19	1.0	20.00	0	97.4	80	120			
Ethylbenzene		19	1.0	20.00	0	96.2	80	120			
Xylenes, Total		60	1.5	60.00	0	99.6	80	120			
Surr: 4-Bromoflue	lorobenzene	9.4		10.00		94.1	70	130			
Surr: Toluene-d8	3	9.2		10.00		92.4	70	130			
Sample ID 18	03516-001ams	Samp	Гуре: М	64	Tes	tCode: El	PA Method	8260: Volatile	es Short L	.ist	
Client ID: MV	W-1	Batc	h ID: W4	49754	F	RunNo: 4	9754				
Prep Date:		Analysis [Date: 3/	13/2018	S	SeqNo: 1	610248	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		34	1.0	20.00	18.07	78.0	80	120			S
Toluene		19	1.0	20.00	0.1932	93.7	80	120			
Ethylbenzene		18	1.0	20.00	0.3064	90.5	80	120			
Xylenes, Total		56	1.5	60.00	0.9892	90.9	80	120			
Surr: 4-Bromoflue		9.2		10.00		92.1	70	130			
Surr: Toluene-d8	2	0.1		10.00		91.3	70	130			
	3	9.1		10.00		01.0	10				
	03516-001amsd		Гуре: МS		Tes			8260: Volatile	es Short L	.ist	
	03516-001amsd	Samp	Гуре: М h ID: W 4	SD4			PA Method		es Short L	ist	
Sample ID 180	03516-001amsd W-1	Samp	h ID: W4	SD4 49754	F	tCode: El	PA Method 9754		es Short L	ist	
Sample ID 180 Client ID: MV Prep Date:	03516-001amsd W-1	Samp ⁻ Batc	h ID: W4	SD4 49754 13/2018	F	tCode: El RunNo: 4	PA Method 9754	8260: Volatile	es Short L %RPD	.ist RPDLimit	Qual
Sample ID 180 Client ID: MV Prep Date: Analyte	03516-001amsd W-1	Samp ⁻ Batc Analysis I Result 34	h ID: W4 Date: 3/ PQL 1.0	6D4 49754 13/2018 SPK value 20.00	F SPK Ref Val 18.07	tCode: El RunNo: 4 SeqNo: 1 %REC 77.4	PA Method 9754 610249 LowLimit 80	8260: Volatile Units: µg/L HighLimit 120	%RPD 0.395	RPDLimit 20	Qual S
Sample ID 180 Client ID: MV Prep Date: Analyte Benzene Foluene	03516-001amsd W-1	Samp [¬] Batc Analysis [Result 34 19	h ID: W 4 Date: 3/ <u>PQL</u> 1.0 1.0	6D4 49754 13/2018 SPK value 20.00 20.00	F SPK Ref Val 18.07 0.1932	tCode: El RunNo: 4 SeqNo: 1 %REC	PA Method 9754 610249 LowLimit 80 80	8260: Volatile Units: μg/L HighLimit 120 120	%RPD 0.395 1.80	RPDLimit 20 20	
Sample ID 180 Client ID: MV Prep Date: Analyte Benzene Foluene Ethylbenzene	03516-001amsd W-1	Samp Batc Analysis I Result 34 19 18	h ID: W4 Date: 3/ PQL 1.0 1.0 1.0	6D4 49754 13/2018 SPK value 20.00 20.00 20.00	F SPK Ref Val 18.07 0.1932 0.3064	tCode: El RunNo: 4 SeqNo: 1 %REC 77.4 92.0 90.0	PA Method 9754 610249 LowLimit 80 80 80	8260: Volatile Units: μ g/L HighLimit 120 120 120	%RPD 0.395 1.80 0.551	RPDLimit 20 20 20	
Sample ID 180 Client ID: MV Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total	03516-001amsd W-1	Samp Batc Analysis I Result 34 19 18 53	h ID: W 4 Date: 3/ <u>PQL</u> 1.0 1.0	SD4 49754 13/2018 SPK value 20.00 20.00 20.00 60.00	F SPK Ref Val 18.07 0.1932	tCode: El RunNo: 4 SeqNo: 1 %REC 77.4 92.0 90.0 87.4	PA Method 9754 610249 LowLimit 80 80 80 80 80	8260: Volatile Units: μg/L HighLimit 120 120 120 120	%RPD 0.395 1.80 0.551 3.77	RPDLimit 20 20 20 20	
Sample ID 180 Client ID: MV Prep Date: Analyte Benzene Toluene Ethylbenzene Kylenes, Total Surr: 4-Bromoflue	03516-001amsd W-1 Iorobenzene	Samp Batc Analysis I Result 34 19 18 53 9.0	h ID: W4 Date: 3/ PQL 1.0 1.0 1.0	5D4 49754 13/2018 SPK value 20.00 20.00 20.00 60.00 10.00	F SPK Ref Val 18.07 0.1932 0.3064	tCode: El RunNo: 4 SeqNo: 1 %REC 77.4 92.0 90.0 87.4 90.4	PA Method 9754 610249 LowLimit 80 80 80 80 70	8260: Volatile Units: μg/L HighLimit 120 120 120 120 130	%RPD 0.395 1.80 0.551 3.77 0	RPDLimit 20 20 20 20 0	
Sample ID 180 Client ID: MV Prep Date: Analyte Benzene Toluene Ethylbenzene Kylenes, Total	03516-001amsd W-1 Iorobenzene	Samp Batc Analysis I Result 34 19 18 53	h ID: W4 Date: 3/ PQL 1.0 1.0 1.0	SD4 49754 13/2018 SPK value 20.00 20.00 20.00 60.00	F SPK Ref Val 18.07 0.1932 0.3064	tCode: El RunNo: 4 SeqNo: 1 %REC 77.4 92.0 90.0 87.4	PA Method 9754 610249 LowLimit 80 80 80 80 80	8260: Volatile Units: μg/L HighLimit 120 120 120 120	%RPD 0.395 1.80 0.551 3.77	RPDLimit 20 20 20 20	
Sample ID 180 Client ID: MV Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromoflue	03516-001amsd W-1 Iorobenzene	Samp ⁻ Batc Analysis I Result 34 19 18 53 9.0 9.4	h ID: W4 Date: 3/ PQL 1.0 1.0 1.0	SD4 49754 13/2018 SPK value 20.00 20.00 20.00 60.00 10.00 10.00	F SPK Ref Val 18.07 0.1932 0.3064 0.9892	tCode: El RunNo: 4 SeqNo: 1 %REC 77.4 92.0 90.0 87.4 90.4 93.6	PA Method 9754 610249 LowLimit 80 80 80 80 70 70 70	8260: Volatile Units: μg/L HighLimit 120 120 120 120 130	%RPD 0.395 1.80 0.551 3.77 0 0	RPDLimit 20 20 20 20 0 0	
Sample ID 18(Client ID: MV Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromofluc Surr: Toluene-d8	03516-001amsd W-1 Iorobenzene	Samp Batc Analysis I Result 34 19 18 53 9.0 9.4 Samp	h ID: W 4 Date: 3/ <u>PQL</u> 1.0 1.0 1.0 1.5	SD4 49754 13/2018 SPK value 20.00 20.00 20.00 60.00 10.00 10.00 3LK	F SPK Ref Val 18.07 0.1932 0.3064 0.9892 Tes	tCode: El RunNo: 4 SeqNo: 1 %REC 77.4 92.0 90.0 87.4 90.4 93.6	PA Method 9754 610249 LowLimit 80 80 80 80 80 70 70 70	8260: Volatile Units: μg/L HighLimit 120 120 120 120 130 130	%RPD 0.395 1.80 0.551 3.77 0 0	RPDLimit 20 20 20 20 0 0	
Sample ID 180 Client ID: MV Prep Date: Analyte Benzene Toluene Ethylbenzene Kylenes, Total Surr: 4-Bromofluc Surr: Toluene-d8 Sample ID rb	03516-001amsd W-1 Iorobenzene 3	Samp Batc Analysis I Result 34 19 18 53 9.0 9.4 Samp	h ID: W4 Date: 3/ PQL 1.0 1.0 1.0 1.5 Type: ME h ID: W4	SD4 49754 13/2018 SPK value 20.00 20.00 20.00 60.00 10.00 10.00 3LK 49754	F SPK Ref Val 18.07 0.1932 0.3064 0.9892 Tes	tCode: El RunNo: 4 SeqNo: 1 %REC 77.4 92.0 90.0 87.4 90.4 93.6 tCode: El	PA Method 9754 610249 LowLimit 80 80 80 80 70 70 70 PA Method 9754	8260: Volatile Units: μg/L HighLimit 120 120 120 120 130 130	%RPD 0.395 1.80 0.551 3.77 0 0	RPDLimit 20 20 20 20 0 0	
Sample ID 180 Client ID: MV Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromofluc Surr: Toluene-d8 Sample ID rb Client ID: PB	03516-001amsd W-1 Iorobenzene 3	Samp Batc Analysis I Result 34 19 18 53 9.0 9.4 Samp Batc	h ID: W4 Date: 3/ PQL 1.0 1.0 1.0 1.5 Type: ME h ID: W4	SD4 49754 13/2018 SPK value 20.00 20.00 60.00 10.00 10.00 3LK 49754	F SPK Ref Val 18.07 0.1932 0.3064 0.9892 Tes	tCode: El RunNo: 4 SeqNo: 1 %REC 77.4 92.0 90.0 87.4 90.4 93.6 tCode: El RunNo: 4	PA Method 9754 610249 LowLimit 80 80 80 80 70 70 70 PA Method 9754	8260: Volatile Units: μg/L HighLimit 120 120 120 120 130 130 8260: Volatile	%RPD 0.395 1.80 0.551 3.77 0 0	RPDLimit 20 20 20 20 0 0	
Sample ID 180 Client ID: MV Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromoflue Surr: Toluene-d8 Sample ID rb Client ID: PB Prep Date:	03516-001amsd W-1 Iorobenzene 3	Samp Batc Analysis I Result 34 19 18 53 9.0 9.4 Samp Batc Analysis I	h ID: W4 Date: 3/ PQL 1.0 1.0 1.0 1.0 1.5 Type: ME h ID: W4 Date: 3/	SD4 49754 13/2018 SPK value 20.00 20.00 60.00 10.00 10.00 3LK 49754	F SPK Ref Val 18.07 0.1932 0.3064 0.9892 Tes F	tCode: El RunNo: 4 SeqNo: 1 %REC 77.4 92.0 90.0 87.4 90.4 93.6 tCode: El RunNo: 4 SeqNo: 1	PA Method 9754 610249 LowLimit 80 80 80 80 80 70 70 70 PA Method 9754 610255	8260: Volatile Units: μg/L HighLimit 120 120 120 120 130 130 8260: Volatile Units: μg/L	%RPD 0.395 1.80 0.551 3.77 0 0	RPDLimit 20 20 20 0 0 0	S
Sample ID 180 Client ID: MV Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromofluc Surr: Toluene-d8 Sample ID rb Client ID: PB Prep Date: Analyte	03516-001amsd W-1 Iorobenzene 3	Samp Batc Analysis I Result 34 19 18 53 9.0 9.4 Samp Batc Analysis I Result	h ID: W4 Date: 3/ PQL 1.0 1.0 1.0 1.0 1.5 Type: ME h ID: W4 Date: 3/ PQL	SD4 49754 13/2018 SPK value 20.00 20.00 60.00 10.00 10.00 3LK 49754	F SPK Ref Val 18.07 0.1932 0.3064 0.9892 Tes F	tCode: El RunNo: 4 SeqNo: 1 %REC 77.4 92.0 90.0 87.4 90.4 93.6 tCode: El RunNo: 4 SeqNo: 1	PA Method 9754 610249 LowLimit 80 80 80 80 80 70 70 70 PA Method 9754 610255	8260: Volatile Units: μg/L HighLimit 120 120 120 120 130 130 8260: Volatile Units: μg/L	%RPD 0.395 1.80 0.551 3.77 0 0	RPDLimit 20 20 20 0 0 0	S
Sample ID 180 Client ID: MV Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surr: 4-Bromofluc Surr: Toluene-d8 Sample ID rb Client ID: PB Prep Date: Analyte Benzene	03516-001amsd W-1 Iorobenzene 3	Samp [¬] Batc Analysis I Result 34 19 18 53 9.0 9.4 Samp [¬] Batc Analysis I Result ND	h ID: W4 Date: 3/ PQL 1.0 1.0 1.0 1.0 1.5 Fype: ME h ID: W4 Date: 3/ PQL 1.0	SD4 49754 13/2018 SPK value 20.00 20.00 60.00 10.00 10.00 3LK 49754	F SPK Ref Val 18.07 0.1932 0.3064 0.9892 Tes F	tCode: El RunNo: 4 SeqNo: 1 %REC 77.4 92.0 90.0 87.4 90.4 93.6 tCode: El RunNo: 4 SeqNo: 1	PA Method 9754 610249 LowLimit 80 80 80 80 80 70 70 70 PA Method 9754 610255	8260: Volatile Units: μg/L HighLimit 120 120 120 120 130 130 8260: Volatile Units: μg/L	%RPD 0.395 1.80 0.551 3.77 0 0	RPDLimit 20 20 20 0 0 0	S

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank

E Value above quantitation range

- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 7 of 8

LTE

Client:

QC SUMMART REFORT	WO#:	1803516
Hall Environmental Analysis Laboratory, Inc.		15-Mar-18

Project: I	Lateral L2									
Sample ID rb	Sar	npType:	MBLK	Tes	tCode: El	PA Method	8260: Volatile	es Short L	ist	
Client ID: PBW	B	atch ID:	W49754	R	anNo: 4	9754				
Prep Date:	Analys	is Date:	3/13/2018	S	SeqNo: 1	610255	Units: µg/L			
Analyte	Resu	t PQ	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 4-Bromofluorobenz	zene 1	1	10.00		107	70	130			
Surr: Toluene-d8	9.3	3	10.00		92.8	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- Reporting Detection Limit RL
- W Sample container temperature is out of limit as specified

Page 8 of 8

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com					Sample Log-In Check List			
Client Name: LTE	Work Order Numb	ber: 180	3516			RcptNo: 1			
Received By: Isaiah Ortiz	3/9/2018			I	میں میں				
Completed By: Isaiah Ortiz	3/9/2018 7:52:26 AM	И		I	and -				
	3/9/18								
mw 3/9/18									
Chain of Custody									
1. Is Chain of Custody complete?		Yes	\checkmark	N	•	Not Present			
2. How was the sample delivered?		Cour	<u>ier</u>						
Log In 3. Was an attempt made to cool the samples?		Yes			b	NA 🗌			
		res	Y	140					
4. Were all samples received at a temperature	of >0° C to 6.0°C	Yes	✓	N	b 🗌				
5. Sample(s) in proper container(s)?		Yes		No					
6. Sufficient sample volume for indicated test(s)?	Yes	V	No					
7. Are samples (except VOA and ONG) proper	y preserved?	Yes	\checkmark	No					
8. Was preservative added to bottles?		Yes		No		NA 🗌			
9. VOA vials have zero headspace?		Yes		No		No VOA Vials 🗹			
10. Were any sample containers received broke	n?	100		No		# of preserved bottles checked			
11. Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Yes	✓	No		for pH: (<2 or >12	unless noted)		
12. Are matrices correctly identified on Chain of	Custody?	Yes	✓	No		Adjusted?			
13. Is it clear what analyses were requested?		Yes	✓	No					
14. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes	✓	No		Checked by:			
Special Handling (if applicable)									
15. Was client notified of all discrepancies with	his order?	Yes		No		NA 🗹			
Person Notified:	Date:		ntarminikiiiiii						
By Whom:	Via:	🗌 eMa	il 🗌	Phone	Fax	In Person			
Regarding:									
Client Instructions:									
16. Additional remarks:									
17. <u>Cooler Information</u> Cooler No │ Temp ºC │ Condition │ Se	al Intact Seal No	Seal D-	10 I	Ciencel	Bur	I			
1 1.0 Good Yes		Seal Da	le	Signed	ву	{			
• • • • • • • • • • • • • • • • • • • •	· · ·					1			

- - - ----

-____

•

Page 1 of 1

March March March March March March March	Kandard Rush HALL ENVIRONMENTAL Project Name: ANALYSIS LABORATORY Ud+Ural L2 Project #: Tal 505.345.3075
Market Market Market Market Market Market Market Market Market	ei. 202-340-38/3
Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux Mux <	0 / MRO)
Defendence Type Type Type <td>s Crark 18.1) + TMB's + TMB</td>	s Crark 18.1) + TMB's + TMB
Preservative Type	18E od 4 5 (GF
1 00 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HEAL No. TPH (Meth BTEX + M BTEX + M BTEX + M
CO3 CO3 CO3 CO3 CO3 CO3 CO3 CO3	-
COC COC COC COC COC COC COC COC COC COC	~
Late Time	-
L 2/15 / 517	۰. ۵.
L 38/16 /STY	c05
Time Time	
Time	
Time	
Time /S'I	
	Time /S'Y Time

May 08, 2018

Danny Burns Williams Four Corners 188 CR 4900 Bloomfield, NM 87413 TEL: (505) 632-4442 FAX Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

OrderNo.: 1804E35

Dear Danny Burns:

RE: Lateral L 2

Hall Environmental Analysis Laboratory received 9 sample(s) on 4/28/2018 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report
Lab Order 1804E35

Date Reported: 5/8/2018

CLIENT: Williams Four Corners	Client Sample ID: MW-2								
Project: Lateral L 2	Collection Date: 4/27/2018 11:30:00 AM								
Lab ID: 1804E35-001	Matrix:	GROUNDWA			8/2018 10:40:00 AM				
Analyses	Result	PQL Qual			Date Analyzed	Batch			
EPA METHOD 8260B: VOLATILES					Analys				
Benzene	170	10	ua/I	10	5/7/2018 6:12:00 PM	R51091			
Toluene	33	1.0	μg/L μg/L	10	5/4/2018 7:26:00 PM	R51091 R51047			
Ethylbenzene	11	1.0		1	5/4/2018 7:26:00 PM	R51047 R51047			
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L μg/L	1	5/4/2018 7:26:00 PM	R51047			
1,2,4-Trimethylbenzene	3.7	1.0	μg/L	1	5/4/2018 7:26:00 PM	R51047			
1,3,5-Trimethylbenzene	3.0	1.0	μg/L	1	5/4/2018 7:26:00 PM	R51047			
1,2-Dichloroethane (EDC)	ND	1.0		1	5/4/2018 7:26:00 PM	R51047 R51047			
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	5/4/2018 7:26:00 PM	R51047 R51047			
Naphthalene	ND	2.0	µg/L	1	5/4/2018 7:26:00 PM	R51047 R51047			
1-Methylnaphthalene	ND	4.0	µg/L	1	5/4/2018 7:26:00 PM	R51047 R51047			
2-Methylnaphthalene	ND	4.0	µg/L	1	5/4/2018 7:26:00 PM	R51047 R51047			
Acetone	36	4.0	µg/L	1	5/4/2018 7:26:00 PM	R51047 R51047			
Bromobenzene	ND	1.0	µg/L	1	5/4/2018 7:26:00 PM	R51047 R51047			
Bromodichloromethane	ND	1.0	µg/L	1	5/4/2018 7:26:00 PM	R51047 R51047			
Bromoform	ND		µg/L						
Bromomethane	ND	1.0	µg/L	1	5/4/2018 7:26:00 PM 5/4/2018 7:26:00 PM	R51047			
		3.0	µg/L	1		R51047			
2-Butanone	ND	10	µg/L	1	5/4/2018 7:26:00 PM	R51047			
Carbon disulfide	ND	10	µg/L	1	5/4/2018 7:26:00 PM	R51047			
Carbon Tetrachloride	ND	1.0	µg/L	1	5/4/2018 7:26:00 PM	R51047			
Chlorobenzene	ND	1.0	µg/L	1	5/4/2018 7:26:00 PM	R51047			
Chloroethane	ND	2.0	µg/L	1	5/4/2018 7:26:00 PM	R51047			
Chloroform	ND	1.0	µg/L	1	5/4/2018 7:26:00 PM	R51047			
Chloromethane	ND	3.0	µg/L	1	5/4/2018 7:26:00 PM	R51047			
2-Chlorotoluene	ND	1.0	µg/L	1	5/4/2018 7:26:00 PM	R51047			
4-Chlorotoluene	ND	1.0	µg/L	1	5/4/2018 7:26:00 PM	R51047			
cis-1,2-DCE	ND	1.0	µg/L	1	5/4/2018 7:26:00 PM	R51047			
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	5/4/2018 7:26:00 PM	R51047			
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	5/4/2018 7:26:00 PM	R51047			
Dibromochloromethane	ND	1.0	µg/L	1	5/4/2018 7:26:00 PM	R51047			
Dibromomethane	ND	1.0	µg/L	1	5/4/2018 7:26:00 PM	R51047			
1,2-Dichlorobenzene	ND	1.0	µg/L	1	5/4/2018 7:26:00 PM	R51047			
1,3-Dichlorobenzene	ND	1.0	µg/L	1	5/4/2018 7:26:00 PM	R51047			
1,4-Dichlorobenzene	ND	1.0	µg/L	1	5/4/2018 7:26:00 PM	R51047			
Dichlorodifluoromethane	ND	1.0	µg/L	1	5/4/2018 7:26:00 PM	R51047			
1,1-Dichloroethane	ND	1.0	µg/L	1	5/4/2018 7:26:00 PM	R51047			
1,1-Dichloroethene	ND	1.0	µg/L	1	5/4/2018 7:26:00 PM	R51047			
1,2-Dichloropropane	ND	1.0	µg/L	1	5/4/2018 7:26:00 PM	R51047			
1,3-Dichloropropane	ND	1.0	µg/L	1	5/4/2018 7:26:00 PM	R51047			
2,2-Dichloropropane	ND	2.0	µg/L	1	5/4/2018 7:26:00 PM	R51047			

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 23
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Oualifiers:

Analytical Report
Lab Order 1804E35

Date Report	ted: 5/8/2018
Date Repor	tea: 5/8/2018

CLIENT: Williams Four Corners			Client Sampl	e ID: M	W-2	
Project: Lateral L 2			Collection 1	Date: 4/2	27/2018 11:30:00 AM	
Lab ID: 1804E35-001	Matrix:	GROUNDW	A Received	Date: 4/2	28/2018 10:40:00 AM	
Analyses	Result	PQL Q	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: RAA
1,1-Dichloropropene	ND	1.0	µg/L	1	5/4/2018 7:26:00 PM	R51047
Hexachlorobutadiene	ND	1.0	μg/L	1	5/4/2018 7:26:00 PM	R51047
2-Hexanone	ND	10	μg/L	1	5/4/2018 7:26:00 PM	R51047
Isopropylbenzene	1.3	1.0	μg/L	1	5/4/2018 7:26:00 PM	R51047
4-Isopropyltoluene	ND	1.0	μg/L	1	5/4/2018 7:26:00 PM	R51047
4-Methyl-2-pentanone	ND	10	μg/L	1	5/4/2018 7:26:00 PM	R51047
Methylene Chloride	ND	3.0	μg/L	1	5/4/2018 7:26:00 PM	R51047
n-Butylbenzene	ND	3.0	μg/L	1	5/4/2018 7:26:00 PM	R51047
n-Propylbenzene	ND	1.0	μg/L	1	5/4/2018 7:26:00 PM	R51047
sec-Butylbenzene	ND	1.0	μg/L	1	5/4/2018 7:26:00 PM	R51047
Styrene	ND	1.0	μg/L	1	5/4/2018 7:26:00 PM	R51047
tert-Butylbenzene	ND	1.0	μg/L	1	5/4/2018 7:26:00 PM	R51047
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	5/4/2018 7:26:00 PM	R51047
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	5/4/2018 7:26:00 PM	R51047
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	5/4/2018 7:26:00 PM	R51047
trans-1,2-DCE	ND	1.0	μg/L	1	5/4/2018 7:26:00 PM	R51047
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	5/4/2018 7:26:00 PM	R51047
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	5/4/2018 7:26:00 PM	R51047
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	5/4/2018 7:26:00 PM	R51047
1,1,1-Trichloroethane	ND	1.0	μg/L	1	5/4/2018 7:26:00 PM	R51047
1,1,2-Trichloroethane	ND	1.0	μg/L	1	5/4/2018 7:26:00 PM	R51047
Trichloroethene (TCE)	ND	1.0	μg/L	1	5/4/2018 7:26:00 PM	R51047
Trichlorofluoromethane	ND	1.0	μg/L	1	5/4/2018 7:26:00 PM	R51047
1,2,3-Trichloropropane	ND	2.0	μg/L	1	5/4/2018 7:26:00 PM	R51047
Vinyl chloride	ND	1.0	μg/L	1	5/4/2018 7:26:00 PM	R51047
Xylenes, Total	76	1.5	µg/L	1	5/4/2018 7:26:00 PM	R51047
Surr: 1,2-Dichloroethane-d4	112	70-130	%Rec	1	5/4/2018 7:26:00 PM	R51047
Surr: 4-Bromofluorobenzene	117	70-130	%Rec	1	5/4/2018 7:26:00 PM	R51047
Surr: Dibromofluoromethane	110	70-130	%Rec	1	5/4/2018 7:26:00 PM	R51047
Surr: Toluene-d8	113	70-130	%Rec	1	5/4/2018 7:26:00 PM	R51047

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	An
	D	Sample Diluted Due to Matrix	Е	Val

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 23
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Analytical Report Lab Order 1804E35

Date Reported: 5/8/2018

CLIENT:	Williams Four Corners	(Client Sample ID: MW-7
Project:	Lateral L 2		Collection Date: 4/27/2018 12:15:00 PM
Lab ID:	1804E35-002	Matrix: GROUNDWA	Received Date: 4/28/2018 10:40:00 AM

Hall Environmental Analysis Laboratory, Inc.

Analyses	Result	PQL Qu	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: RAA
Benzene	ND	1.0	µg/L	1	5/7/2018 6:36:00 PM	R51091
Toluene	ND	1.0	µg/L	1	5/7/2018 6:36:00 PM	R51091
Ethylbenzene	ND	1.0	µg/L	1	5/7/2018 6:36:00 PM	R51091
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	5/7/2018 6:36:00 PM	R51091
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	5/7/2018 6:36:00 PM	R51091
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	5/7/2018 6:36:00 PM	R51091
1,2-Dichloroethane (EDC)	ND	1.0	µg/L	1	5/7/2018 6:36:00 PM	R51091
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	5/7/2018 6:36:00 PM	R51091
Naphthalene	ND	2.0	µg/L	1	5/7/2018 6:36:00 PM	R51091
1-Methylnaphthalene	ND	4.0	µg/L	1	5/7/2018 6:36:00 PM	R51091
2-Methylnaphthalene	ND	4.0	µg/L	1	5/7/2018 6:36:00 PM	R51091
Acetone	ND	10	µg/L	1	5/7/2018 6:36:00 PM	R51091
Bromobenzene	ND	1.0	µg/L	1	5/7/2018 6:36:00 PM	R51091
Bromodichloromethane	ND	1.0	µg/L	1	5/7/2018 6:36:00 PM	R51091
Bromoform	ND	1.0	µg/L	1	5/7/2018 6:36:00 PM	R51091
Bromomethane	ND	3.0	µg/L	1	5/7/2018 6:36:00 PM	R51091
2-Butanone	ND	10	µg/L	1	5/7/2018 6:36:00 PM	R51091
Carbon disulfide	ND	10	µg/L	1	5/7/2018 6:36:00 PM	R51091
Carbon Tetrachloride	ND	1.0	µg/L	1	5/7/2018 6:36:00 PM	R51091
Chlorobenzene	ND	1.0	µg/L	1	5/7/2018 6:36:00 PM	R51091
Chloroethane	ND	2.0	µg/L	1	5/7/2018 6:36:00 PM	R51091
Chloroform	ND	1.0	µg/L	1	5/7/2018 6:36:00 PM	R51091
Chloromethane	ND	3.0	µg/L	1	5/7/2018 6:36:00 PM	R51091
2-Chlorotoluene	ND	1.0	µg/L	1	5/7/2018 6:36:00 PM	R51091
4-Chlorotoluene	ND	1.0	µg/L	1	5/7/2018 6:36:00 PM	R51091
cis-1,2-DCE	ND	1.0	μg/L	1	5/7/2018 6:36:00 PM	R51091
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	5/7/2018 6:36:00 PM	R51091
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	5/7/2018 6:36:00 PM	R51091
Dibromochloromethane	ND	1.0	μg/L	1	5/7/2018 6:36:00 PM	R51091
Dibromomethane	ND	1.0	μg/L	1	5/7/2018 6:36:00 PM	R51091
1,2-Dichlorobenzene	ND	1.0	μg/L	1	5/7/2018 6:36:00 PM	R51091
1,3-Dichlorobenzene	ND	1.0	μg/L	1	5/7/2018 6:36:00 PM	R51091
1,4-Dichlorobenzene	ND	1.0	μg/L	1	5/7/2018 6:36:00 PM	R51091
Dichlorodifluoromethane	ND	1.0	µg/L	1	5/7/2018 6:36:00 PM	R51091
1,1-Dichloroethane	ND	1.0	µg/L	1	5/7/2018 6:36:00 PM	R51091
1,1-Dichloroethene	ND	1.0	µg/L	1	5/7/2018 6:36:00 PM	R51091
1,2-Dichloropropane	ND	1.0	µg/L	1	5/7/2018 6:36:00 PM	R51091
1,3-Dichloropropane	ND	1.0	µg/L	1	5/7/2018 6:36:00 PM	R51091
2,2-Dichloropropane	ND	2.0	µg/L	1	5/7/2018 6:36:00 PM	R51091

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 3 of 23
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Analytical Report Lab Order 1804E35

Date I	Reported:	5/8/2018	

CLIENT: Williams Four Corners		(Client Sam	ple ID: MW-7	
Project: Lateral L 2			Collection	Date: 4/27/2018 12:15:00 PM	
Lab ID: 1804E35-002	Matrix:	GROUNDWA	Received	d Date: 4/28/2018 10:40:00 AM	
Analyses	Result	PQL Qual	Units	DF Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES				Analyst	RAA
1,1-Dichloropropene	ND	1.0	µg/L	1 5/7/2018 6:36:00 PM	R51091
Hexachlorobutadiene	ND	1.0	µg/L	1 5/7/2018 6:36:00 PM	R51091
2-Hexanone	ND	10	µg/L	1 5/7/2018 6:36:00 PM	R51091
Isopropylbenzene	ND	1.0	µg/L	1 5/7/2018 6:36:00 PM	R51091
4-Isopropyltoluene	ND	1.0	µg/L	1 5/7/2018 6:36:00 PM	R51091
4-Methyl-2-pentanone	ND	10	µg/L	1 5/7/2018 6:36:00 PM	R51091
Methylene Chloride	ND	3.0	µg/L	1 5/7/2018 6:36:00 PM	R51091
n-Butylbenzene	ND	3.0	µg/L	1 5/7/2018 6:36:00 PM	R51091
n-Propylbenzene	ND	1.0	µg/L	1 5/7/2018 6:36:00 PM	R51091
sec-Butylbenzene	ND	1.0	µg/L	1 5/7/2018 6:36:00 PM	R51091
Styrene	ND	1.0	µg/L	1 5/7/2018 6:36:00 PM	R51091
tert-Butylbenzene	ND	1.0	µg/L	1 5/7/2018 6:36:00 PM	R51091
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1 5/7/2018 6:36:00 PM	R51091
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1 5/7/2018 6:36:00 PM	R51091
Tetrachloroethene (PCE)	ND	1.0	µg/L	1 5/7/2018 6:36:00 PM	R51091
trans-1,2-DCE	ND	1.0	µg/L	1 5/7/2018 6:36:00 PM	R51091
trans-1,3-Dichloropropene	ND	1.0	µg/L	1 5/7/2018 6:36:00 PM	R51091
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1 5/7/2018 6:36:00 PM	R51091
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1 5/7/2018 6:36:00 PM	R51091
1,1,1-Trichloroethane	ND	1.0	µg/L	1 5/7/2018 6:36:00 PM	R51091
1,1,2-Trichloroethane	ND	1.0	µg/L	1 5/7/2018 6:36:00 PM	R51091
Trichloroethene (TCE)	ND	1.0	µg/L	1 5/7/2018 6:36:00 PM	R51091
Trichlorofluoromethane	ND	1.0	µg/L	1 5/7/2018 6:36:00 PM	R51091
1,2,3-Trichloropropane	ND	2.0	µg/L	1 5/7/2018 6:36:00 PM	R51091
Vinyl chloride	ND	1.0	µg/L	1 5/7/2018 6:36:00 PM	R51091
Xylenes, Total	ND	1.5	µg/L	1 5/7/2018 6:36:00 PM	R51091
Surr: 1,2-Dichloroethane-d4	118	70-130	%Rec	1 5/7/2018 6:36:00 PM	R51091
Surr: 4-Bromofluorobenzene	115	70-130	%Rec	1 5/7/2018 6:36:00 PM	R51091
Surr: Dibromofluoromethane	116	70-130	%Rec	1 5/7/2018 6:36:00 PM	R51091
Surr: Toluene-d8	113	70-130	%Rec	1 5/7/2018 6:36:00 PM	R51091

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detect
	D	Sample Diluted Due to Matrix	E	Value above q
	Н	Holding times for preparation or analysis exceeded	J	Analyte detect

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- cted in the associated Method Blank
- quantitation range
- cted below quantitation limits Page 4 of 23
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

Project:

Lab ID:

CLIENT: Williams Four Corners

Lateral L 2

1804E35-003

Analytical Report Lab Order 1804E35

Date Reported: 5/8/2018

Client Sample ID: MW-6

Collection Date: 4/27/2018 1:15:00 PM

Matrix: GROUNDWA Received Date: 4/28/2018 10:40:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: RAA
Benzene	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
Toluene	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
Ethylbenzene	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
1,3,5-Trimethylbenzene	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
1,2-Dichloroethane (EDC)	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
Naphthalene	ND	2.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
1-Methylnaphthalene	ND	4.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
2-Methylnaphthalene	ND	4.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
Acetone	ND	10	µg/L	1	5/4/2018 8:14:00 PM	R51047
Bromobenzene	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
Bromodichloromethane	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
Bromoform	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
Bromomethane	ND	3.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
2-Butanone	ND	10	µg/L	1	5/4/2018 8:14:00 PM	R51047
Carbon disulfide	ND	10	µg/L	1	5/4/2018 8:14:00 PM	R51047
Carbon Tetrachloride	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
Chlorobenzene	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
Chloroethane	ND	2.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
Chloroform	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
Chloromethane	ND	3.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
2-Chlorotoluene	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
4-Chlorotoluene	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
cis-1,2-DCE	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
Dibromochloromethane	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
Dibromomethane	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
1,2-Dichlorobenzene	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
1,3-Dichlorobenzene	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
1,4-Dichlorobenzene	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
Dichlorodifluoromethane	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
1,1-Dichloroethane	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
1,1-Dichloroethene	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
1,2-Dichloropropane	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
1,3-Dichloropropane	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047
2,2-Dichloropropane	ND	2.0	µg/L	1	5/4/2018 8:14:00 PM	R51047

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 5 of 23
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Analytical Report Lab Order 1804E35

Date	Reported:	5/8/2019
Date	Reported:	5/8/2018

Hall Environmental Analys		Date Reported: 5/8/201	8					
CLIENT: Williams Four Corners		(Client Samp	le ID: M	W-6			
Project: Lateral L 2	Collection Date: 4/27/2018 1:15:00 PM							
Lab ID: 1804E35-003	Matrix:	GROUNDWA	Received Date: 4/28/2018 10		28/2018 10:40:00 AM			
Analyses	Result	PQL Qual	Units	DF	Date Analyzed	Batch		
EPA METHOD 8260B: VOLATILES					Analys	t: RAA		
1,1-Dichloropropene	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047		
Hexachlorobutadiene	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047		
2-Hexanone	ND	10	µg/L	1	5/4/2018 8:14:00 PM	R51047		
Isopropylbenzene	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047		
4-Isopropyltoluene	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047		
4-Methyl-2-pentanone	ND	10	µg/L	1	5/4/2018 8:14:00 PM	R51047		
Methylene Chloride	ND	3.0	µg/L	1	5/4/2018 8:14:00 PM	R51047		
n-Butylbenzene	ND	3.0	µg/L	1	5/4/2018 8:14:00 PM	R51047		
n-Propylbenzene	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047		
sec-Butylbenzene	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047		
Styrene	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047		
tert-Butylbenzene	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047		
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047		
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	5/4/2018 8:14:00 PM	R51047		
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047		
trans-1,2-DCE	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047		
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047		
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047		
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047		
1,1,1-Trichloroethane	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047		
1,1,2-Trichloroethane	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047		
Trichloroethene (TCE)	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047		
Trichlorofluoromethane	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047		
1,2,3-Trichloropropane	ND	2.0	µg/L	1	5/4/2018 8:14:00 PM	R51047		
Vinyl chloride	ND	1.0	µg/L	1	5/4/2018 8:14:00 PM	R51047		
Xylenes, Total	ND	1.5	µg/L	1	5/4/2018 8:14:00 PM	R51047		
Surr: 1,2-Dichloroethane-d4	114	70-130	%Rec	1	5/4/2018 8:14:00 PM	R51047		
Surr: 4-Bromofluorobenzene	115	70-130	%Rec	1	5/4/2018 8:14:00 PM	R51047		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

70-130

70-130

%Rec

%Rec

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detect
	D	Sample Diluted Due to Matrix	E	Value above q
	Н	Holding times for preparation or analysis exceeded	J	Analyte detect
	ND	Not Detected at the Reporting Limit	Р	Sample pH No
	PQL	Practical Quanitative Limit	RL	Reporting Det
	S	% Recovery outside of range due to dilution or matrix	W	Sample contai

111

113

Released to Imaging: 11/5/2024 1:18:12 PM

Surr: Dibromofluoromethane

Surr: Toluene-d8

cted in the associated Method Blank

1

1

- quantitation range
- cted below quantitation limits Page 6 of 23

5/4/2018 8:14:00 PM

5/4/2018 8:14:00 PM

R51047

R51047

.

- Not In Range
- etection Limit
- ainer temperature is out of limit as specified

Analytical Report Lab Order 1804E35

Date Reported: 5/8/2018

CLIENT: Williams Four Corners Project: Lateral L 2	Client Sample ID: MW-3 Collection Date: 4/27/2018 1:50:00 PM						
Lab ID: 1804E35-004	Matrix:	GROUNDWA	Received	Date: 4/28/2018 10:40:00 AM			
Analyses	Result	PQL Qual	Units	DF Date Analyzed Batch			
EPA METHOD 8260B: VOLATILES				Analyst: RAA			
Benzene	ND	1.0	µg/L	1 5/4/2018 8:38:00 PM R51047			
Toluene	ND	1.0	µg/L	1 5/4/2018 8:38:00 PM R51047			
Ethylbenzene	ND	1.0	µg/L	1 5/4/2018 8:38:00 PM R51047			
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1 5/4/2018 8:38:00 PM R51047			
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1 5/4/2018 8:38:00 PM R51047			
1,3,5-Trimethylbenzene	ND	1.0	µg/L	1 5/4/2018 8:38:00 PM R51047			
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1 5/4/2018 8:38:00 PM R51047			
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1 5/4/2018 8:38:00 PM R51047			
Naphthalene	ND	2.0	μg/L	1 5/4/2018 8:38:00 PM R51047			
1-Methylnaphthalene	ND	4.0	μg/L	1 5/4/2018 8:38:00 PM R51047			
2-Methylnaphthalene	ND	4.0	μg/L	1 5/4/2018 8:38:00 PM R51047			
Acetone	ND	10	μg/L	1 5/4/2018 8:38:00 PM R51047			
Bromobenzene	ND	1.0	μg/L	1 5/4/2018 8:38:00 PM R51047			
Bromodichloromethane	ND	1.0	μg/L	1 5/4/2018 8:38:00 PM R51047			
Bromoform	ND	1.0	µg/L	1 5/4/2018 8:38:00 PM R51047			
Bromomethane	ND	3.0	µg/L	1 5/4/2018 8:38:00 PM R51047			
2-Butanone	ND	10	µg/L	1 5/4/2018 8:38:00 PM R51047			
Carbon disulfide	ND	10	µg/L	1 5/4/2018 8:38:00 PM R51047			
Carbon Tetrachloride	ND	1.0	µg/L	1 5/4/2018 8:38:00 PM R51047			
Chlorobenzene	ND	1.0	μg/L	1 5/4/2018 8:38:00 PM R51047			
Chloroethane	ND	2.0	μg/L	1 5/4/2018 8:38:00 PM R51047			
Chloroform	ND	1.0	μg/L	1 5/4/2018 8:38:00 PM R51047			
Chloromethane	ND	3.0	μg/L	1 5/4/2018 8:38:00 PM R51047			
2-Chlorotoluene	ND	1.0		1 5/4/2018 8:38:00 PM R51047			
			µg/L				
4-Chlorotoluene	ND	1.0	µg/L				
cis-1,2-DCE	ND	1.0	µg/L	1 5/4/2018 8:38:00 PM R51047			
cis-1,3-Dichloropropene	ND	1.0	µg/L	1 5/4/2018 8:38:00 PM R51047			
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1 5/4/2018 8:38:00 PM R51047			
Dibromochloromethane	ND	1.0	µg/L	1 5/4/2018 8:38:00 PM R51047			
Dibromomethane	ND	1.0	µg/L	1 5/4/2018 8:38:00 PM R51047			
1,2-Dichlorobenzene	ND	1.0	µg/L	1 5/4/2018 8:38:00 PM R51047			
1,3-Dichlorobenzene	ND	1.0	µg/L	1 5/4/2018 8:38:00 PM R51047			
1,4-Dichlorobenzene	ND	1.0	µg/L	1 5/4/2018 8:38:00 PM R51047			
Dichlorodifluoromethane	ND	1.0	µg/L	1 5/4/2018 8:38:00 PM R51047			
1,1-Dichloroethane	ND	1.0	µg/L	1 5/4/2018 8:38:00 PM R51047			
1,1-Dichloroethene	ND	1.0	µg/L	1 5/4/2018 8:38:00 PM R51047			
1,2-Dichloropropane	ND	1.0	µg/L	1 5/4/2018 8:38:00 PM R51047			
1,3-Dichloropropane	ND	1.0	µg/L	1 5/4/2018 8:38:00 PM R51047			
2,2-Dichloropropane	ND	2.0	µg/L	1 5/4/2018 8:38:00 PM R51047			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Oualifiers: * Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 7 of 23 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

Analytical Report Lab Order 1804E35

CLIENT: Williams Four Corners		C	lient Samp	le ID: M	W-3			
Project: Lateral L 2	Collection Date: 4/27/2018 1:50:00 PM							
Lab ID: 1804E35-004	Matrix: GROUNDWA Received Date: 4/28/2018 10:40:00 AM							
Analyses	Result	PQL Qual	Units	DF	Date Analyzed	Batch		
EPA METHOD 8260B: VOLATILES					Analys	t: RAA		
1,1-Dichloropropene	ND	1.0	µg/L	1	5/4/2018 8:38:00 PM	R51047		
Hexachlorobutadiene	ND	1.0	µg/L	1	5/4/2018 8:38:00 PM	R51047		
2-Hexanone	ND	10	µg/L	1	5/4/2018 8:38:00 PM	R51047		
Isopropylbenzene	ND	1.0	µg/L	1	5/4/2018 8:38:00 PM	R51047		
4-Isopropyltoluene	ND	1.0	µg/L	1	5/4/2018 8:38:00 PM	R5104		
4-Methyl-2-pentanone	ND	10	µg/L	1	5/4/2018 8:38:00 PM	R51047		
Methylene Chloride	ND	3.0	µg/L	1	5/4/2018 8:38:00 PM	R51047		
n-Butylbenzene	ND	3.0	µg/L	1	5/4/2018 8:38:00 PM	R51047		
n-Propylbenzene	ND	1.0	µg/L	1	5/4/2018 8:38:00 PM	R51047		
sec-Butylbenzene	ND	1.0	µg/L	1	5/4/2018 8:38:00 PM	R51047		
Styrene	ND	1.0	µg/L	1	5/4/2018 8:38:00 PM	R51047		
tert-Butylbenzene	ND	1.0	µg/L	1	5/4/2018 8:38:00 PM	R51047		
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	5/4/2018 8:38:00 PM	R51047		
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	5/4/2018 8:38:00 PM	R51047		
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	5/4/2018 8:38:00 PM	R51047		
trans-1,2-DCE	ND	1.0	µg/L	1	5/4/2018 8:38:00 PM	R51047		
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	5/4/2018 8:38:00 PM	R51047		
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	5/4/2018 8:38:00 PM	R51047		
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	5/4/2018 8:38:00 PM	R51047		
1,1,1-Trichloroethane	ND	1.0	µg/L	1	5/4/2018 8:38:00 PM	R51047		
1,1,2-Trichloroethane	ND	1.0	µg/L	1	5/4/2018 8:38:00 PM	R51047		
Trichloroethene (TCE)	ND	1.0	µg/L	1	5/4/2018 8:38:00 PM	R51047		
Trichlorofluoromethane	ND	1.0	µg/L	1	5/4/2018 8:38:00 PM	R51047		
1,2,3-Trichloropropane	ND	2.0	µg/L	1	5/4/2018 8:38:00 PM	R51047		
Vinyl chloride	ND	1.0	µg/L	1	5/4/2018 8:38:00 PM	R51047		
Xylenes, Total	ND	1.5	µg/L	1	5/4/2018 8:38:00 PM	R51047		
Surr: 1,2-Dichloroethane-d4	113	70-130	%Rec	1	5/4/2018 8:38:00 PM	R51047		
Surr: 4-Bromofluorobenzene	114	70-130	%Rec	1	5/4/2018 8:38:00 PM	R5104		
Surr: Dibromofluoromethane	108	70-130	%Rec	1	5/4/2018 8:38:00 PM	R51047		
Surr: Toluene-d8	113	70-130	%Rec	1	5/4/2018 8:38:00 PM	R51047		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 8 of 23
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Analytical Report Lab Order 1804E35

Date Reported: 5/8/2018

AM

CLIENT:	Williams Four Corners		Client Sample ID: MW-4
Project:	Lateral L 2		Collection Date: 4/27/2018 2:25:00 PM
Lab ID:	1804E35-005	Matrix: GROUNDWA	Received Date: 4/28/2018 10:40:00 AM

Hall Environmental Analysis Laboratory, Inc.

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: RAA
Benzene	ND	1.0	µg/L	1	5/4/2018 9:02:00 PM	R51047
Toluene	ND	1.0	µg/L	1	5/4/2018 9:02:00 PM	R51047
Ethylbenzene	ND	1.0	µg/L	1	5/4/2018 9:02:00 PM	R51047
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	5/4/2018 9:02:00 PM	R51047
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	5/4/2018 9:02:00 PM	R51047
1,3,5-Trimethylbenzene	ND	1.0	µg/L	1	5/4/2018 9:02:00 PM	R51047
1,2-Dichloroethane (EDC)	ND	1.0	µg/L	1	5/4/2018 9:02:00 PM	R51047
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	5/4/2018 9:02:00 PM	R51047
Naphthalene	ND	2.0	µg/L	1	5/4/2018 9:02:00 PM	R51047
1-Methylnaphthalene	ND	4.0	µg/L	1	5/4/2018 9:02:00 PM	R51047
2-Methylnaphthalene	ND	4.0	μg/L	1	5/4/2018 9:02:00 PM	R51047
Acetone	ND	10	μg/L	1	5/4/2018 9:02:00 PM	R51047
Bromobenzene	ND	1.0	μg/L	1	5/4/2018 9:02:00 PM	R51047
Bromodichloromethane	ND	1.0	μg/L	1	5/4/2018 9:02:00 PM	R51047
Bromoform	ND	1.0	μg/L	1	5/4/2018 9:02:00 PM	R51047
Bromomethane	ND	3.0	μg/L	1	5/4/2018 9:02:00 PM	R51047
2-Butanone	ND	10	μg/L	1	5/4/2018 9:02:00 PM	R51047
Carbon disulfide	ND	10	μg/L	1	5/4/2018 9:02:00 PM	R51047
Carbon Tetrachloride	ND	1.0	μg/L	1	5/4/2018 9:02:00 PM	R51047
Chlorobenzene	ND	1.0	μg/L	1	5/4/2018 9:02:00 PM	R51047
Chloroethane	ND	2.0	μg/L	1	5/4/2018 9:02:00 PM	R51047
Chloroform	ND	1.0	μg/L	1	5/4/2018 9:02:00 PM	R51047
Chloromethane	ND	3.0	μg/L	1	5/4/2018 9:02:00 PM	R51047
2-Chlorotoluene	ND	1.0	μg/L	1	5/4/2018 9:02:00 PM	R51047
4-Chlorotoluene	ND	1.0	μg/L	1	5/4/2018 9:02:00 PM	R51047
cis-1,2-DCE	ND	1.0	μg/L	1	5/4/2018 9:02:00 PM	R51047
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	5/4/2018 9:02:00 PM	R51047
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	5/4/2018 9:02:00 PM	R51047
Dibromochloromethane	ND	1.0	μg/L	1	5/4/2018 9:02:00 PM	R51047
Dibromomethane	ND	1.0	μg/L	1	5/4/2018 9:02:00 PM	R51047
1,2-Dichlorobenzene	ND	1.0	μg/L	1	5/4/2018 9:02:00 PM	R51047
1,3-Dichlorobenzene	ND	1.0	μg/L	1	5/4/2018 9:02:00 PM	R51047
1,4-Dichlorobenzene	ND	1.0	μg/L	1	5/4/2018 9:02:00 PM	R51047
Dichlorodifluoromethane	ND	1.0	μg/L	1	5/4/2018 9:02:00 PM	R51047
1,1-Dichloroethane	ND	1.0	μg/L	1	5/4/2018 9:02:00 PM	R51047
1,1-Dichloroethene	ND	1.0	μg/L	1	5/4/2018 9:02:00 PM	R51047
1,2-Dichloropropane	ND	1.0	μg/L	1	5/4/2018 9:02:00 PM	R51047
1,3-Dichloropropane	ND	1.0	μg/L	1	5/4/2018 9:02:00 PM	R51047
2,2-Dichloropropane	ND	2.0	µg/L	1	5/4/2018 9:02:00 PM	R51047

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 9 of 23 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

Analytical Report Lab Order 1804E35

_		
Date	Reported:	5/8/2018

		•		*		
CLIENT: Williams Four Corners	Client Sample ID: MW-4 Collection Date: 4/27/2018 2:25:00 PM					
Project: Lateral L 2						
Lab ID: 1804E35-005	Matrix:	GROUNDWA	Received	Date: 4/28/2018 10:40:00 AM		
Analyses	Result	PQL Qua	l Units	DF Date Analyzed Batch		
EPA METHOD 8260B: VOLATILES				Analyst: RAA		
1,1-Dichloropropene	ND	1.0	µg/L	1 5/4/2018 9:02:00 PM R5104		
Hexachlorobutadiene	ND	1.0	µg/L	1 5/4/2018 9:02:00 PM R5104		
2-Hexanone	ND	10	µg/L	1 5/4/2018 9:02:00 PM R5104		
Isopropylbenzene	ND	1.0	µg/L	1 5/4/2018 9:02:00 PM R5104		
4-Isopropyltoluene	ND	1.0	µg/L	1 5/4/2018 9:02:00 PM R5104		
4-Methyl-2-pentanone	ND	10	µg/L	1 5/4/2018 9:02:00 PM R5104		
Methylene Chloride	ND	3.0	µg/L	1 5/4/2018 9:02:00 PM R5104		
n-Butylbenzene	ND	3.0	µg/L	1 5/4/2018 9:02:00 PM R5104		
n-Propylbenzene	ND	1.0	µg/L	1 5/4/2018 9:02:00 PM R5104		
sec-Butylbenzene	ND	1.0	µg/L	1 5/4/2018 9:02:00 PM R5104		
Styrene	ND	1.0	µg/L	1 5/4/2018 9:02:00 PM R5104		
tert-Butylbenzene	ND	1.0	µg/L	1 5/4/2018 9:02:00 PM R5104		
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1 5/4/2018 9:02:00 PM R5104		
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1 5/4/2018 9:02:00 PM R5104		
Tetrachloroethene (PCE)	ND	1.0	µg/L	1 5/4/2018 9:02:00 PM R5104		
trans-1,2-DCE	ND	1.0	µg/L	1 5/4/2018 9:02:00 PM R5104		
trans-1,3-Dichloropropene	ND	1.0	µg/L	1 5/4/2018 9:02:00 PM R5104		
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1 5/4/2018 9:02:00 PM R5104		
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1 5/4/2018 9:02:00 PM R5104		
1,1,1-Trichloroethane	ND	1.0	µg/L	1 5/4/2018 9:02:00 PM R5104		
1,1,2-Trichloroethane	ND	1.0	µg/L	1 5/4/2018 9:02:00 PM R5104		
Trichloroethene (TCE)	ND	1.0	µg/L	1 5/4/2018 9:02:00 PM R5104		
Trichlorofluoromethane	ND	1.0	µg/L	1 5/4/2018 9:02:00 PM R5104		
1,2,3-Trichloropropane	ND	2.0	µg/L	1 5/4/2018 9:02:00 PM R5104		
Vinyl chloride	ND	1.0	µg/L	1 5/4/2018 9:02:00 PM R5104		
Xylenes, Total	ND	1.5	µg/L	1 5/4/2018 9:02:00 PM R5104		
Surr: 1,2-Dichloroethane-d4	113	70-130	%Rec	1 5/4/2018 9:02:00 PM R5104		
Surr: 4-Bromofluorobenzene	114	70-130	%Rec	1 5/4/2018 9:02:00 PM R5104		
Surr: Dibromofluoromethane	110	70-130	%Rec	1 5/4/2018 9:02:00 PM R5104		
Surr: Toluene-d8	114	70-130	%Rec	1 5/4/2018 9:02:00 PM R5104		

Qualifiers: * Value exceeds M	aximum Contaminant Level.
-------------------------------	---------------------------

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 10 of 23
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Analytical Report Lab Order 1804E35

Date Reported: 5/8/2018

CLIENT:	Williams Four Corners	(Client Sample ID: MW-5
Project:	Lateral L 2		Collection Date: 4/27/2018 3:25:00 PM
Lab ID:	1804E35-006	Matrix: GROUNDWA	Received Date: 4/28/2018 10:40:00 AM

Hall Environmental Analysis Laboratory, Inc.

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: RAA
Benzene	190	10	µg/L	10	5/7/2018 7:00:00 PM	R5109 ²
Toluene	ND	1.0	µg/L	1	5/4/2018 9:26:00 PM	R51047
Ethylbenzene	5.7	1.0	µg/L	1	5/4/2018 9:26:00 PM	R51047
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	5/4/2018 9:26:00 PM	R51047
1,2,4-Trimethylbenzene	1.5	1.0	µg/L	1	5/4/2018 9:26:00 PM	R51047
1,3,5-Trimethylbenzene	1.6	1.0	µg/L	1	5/4/2018 9:26:00 PM	R5104
1,2-Dichloroethane (EDC)	ND	1.0	µg/L	1	5/4/2018 9:26:00 PM	R5104
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	5/4/2018 9:26:00 PM	R5104
Naphthalene	ND	2.0	µg/L	1	5/4/2018 9:26:00 PM	R5104
1-Methylnaphthalene	ND	4.0	µg/L	1	5/4/2018 9:26:00 PM	R5104
2-Methylnaphthalene	ND	4.0	µg/L	1	5/4/2018 9:26:00 PM	R5104
Acetone	20	10	µg/L	1	5/4/2018 9:26:00 PM	R5104
Bromobenzene	ND	1.0	µg/L	1	5/4/2018 9:26:00 PM	R5104
Bromodichloromethane	ND	1.0	µg/L	1	5/4/2018 9:26:00 PM	R5104
Bromoform	ND	1.0	µg/L	1	5/4/2018 9:26:00 PM	R5104
Bromomethane	ND	3.0	µg/L	1	5/4/2018 9:26:00 PM	R5104
2-Butanone	ND	10	µg/L	1	5/4/2018 9:26:00 PM	R5104
Carbon disulfide	ND	10	µg/L	1	5/4/2018 9:26:00 PM	R5104
Carbon Tetrachloride	ND	1.0	µg/L	1	5/4/2018 9:26:00 PM	R5104
Chlorobenzene	ND	1.0	µg/L	1	5/4/2018 9:26:00 PM	R5104
Chloroethane	ND	2.0	µg/L	1	5/4/2018 9:26:00 PM	R5104
Chloroform	ND	1.0	µg/L	1	5/4/2018 9:26:00 PM	R5104
Chloromethane	ND	3.0	µg/L	1	5/4/2018 9:26:00 PM	R5104
2-Chlorotoluene	ND	1.0	µg/L	1	5/4/2018 9:26:00 PM	R5104
4-Chlorotoluene	ND	1.0	µg/L	1	5/4/2018 9:26:00 PM	R5104
cis-1,2-DCE	ND	1.0	µg/L	1	5/4/2018 9:26:00 PM	R5104
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	5/4/2018 9:26:00 PM	R5104
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	5/4/2018 9:26:00 PM	R5104
Dibromochloromethane	ND	1.0	µg/L	1	5/4/2018 9:26:00 PM	R5104
Dibromomethane	ND	1.0	µg/L	1	5/4/2018 9:26:00 PM	R5104
1,2-Dichlorobenzene	ND	1.0	µg/L	1	5/4/2018 9:26:00 PM	R5104
1,3-Dichlorobenzene	ND	1.0	µg/L	1	5/4/2018 9:26:00 PM	R5104
1,4-Dichlorobenzene	ND	1.0	µg/L	1	5/4/2018 9:26:00 PM	R5104
Dichlorodifluoromethane	ND	1.0	µg/L	1	5/4/2018 9:26:00 PM	R5104
1,1-Dichloroethane	ND	1.0	μg/L	1	5/4/2018 9:26:00 PM	R5104
1,1-Dichloroethene	ND	1.0	μg/L	1	5/4/2018 9:26:00 PM	R5104
1,2-Dichloropropane	ND	1.0	μg/L	1	5/4/2018 9:26:00 PM	R5104
1,3-Dichloropropane	ND	1.0	µg/L	1	5/4/2018 9:26:00 PM	R5104
2,2-Dichloropropane	ND	2.0	µg/L	1	5/4/2018 9:26:00 PM	R51047

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limit Page 11 of 23 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

Analytical Report Lab Order 1804E35

Date Reported: 5/8/2018

CLIENT: Williams Four Corners	Client Sample ID: MW-5					
Project: Lateral L 2	Collection Date: 4/27/2018 3:25:00 PM					
Lab ID: 1804E35-006	Matrix:	GROUNDWA	Received	Date: 4/28/2018 10:40:00 AM		
Analyses	Result	PQL Qu	al Units	DF Date Analyzed Batc		
EPA METHOD 8260B: VOLATILES				Analyst: RAA		
1,1-Dichloropropene	ND	1.0	µg/L	1 5/4/2018 9:26:00 PM R510		
Hexachlorobutadiene	ND	1.0	µg/L	1 5/4/2018 9:26:00 PM R510		
2-Hexanone	ND	10	µg/L	1 5/4/2018 9:26:00 PM R510		
Isopropylbenzene	ND	1.0	µg/L	1 5/4/2018 9:26:00 PM R510		
4-Isopropyltoluene	ND	1.0	µg/L	1 5/4/2018 9:26:00 PM R510		
4-Methyl-2-pentanone	ND	10	µg/L	1 5/4/2018 9:26:00 PM R510		
Methylene Chloride	ND	3.0	µg/L	1 5/4/2018 9:26:00 PM R510		
n-Butylbenzene	ND	3.0	µg/L	1 5/4/2018 9:26:00 PM R510		
n-Propylbenzene	ND	1.0	µg/L	1 5/4/2018 9:26:00 PM R510		
sec-Butylbenzene	ND	1.0	µg/L	1 5/4/2018 9:26:00 PM R510		
Styrene	ND	1.0	µg/L	1 5/4/2018 9:26:00 PM R510		
tert-Butylbenzene	ND	1.0	µg/L	1 5/4/2018 9:26:00 PM R510		
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1 5/4/2018 9:26:00 PM R510		
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1 5/4/2018 9:26:00 PM R510		
Tetrachloroethene (PCE)	ND	1.0	µg/L	1 5/4/2018 9:26:00 PM R510		
trans-1,2-DCE	ND	1.0	µg/L	1 5/4/2018 9:26:00 PM R510		
trans-1,3-Dichloropropene	ND	1.0	µg/L	1 5/4/2018 9:26:00 PM R510		
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1 5/4/2018 9:26:00 PM R510		
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1 5/4/2018 9:26:00 PM R510		
1,1,1-Trichloroethane	ND	1.0	µg/L	1 5/4/2018 9:26:00 PM R510		
1,1,2-Trichloroethane	ND	1.0	µg/L	1 5/4/2018 9:26:00 PM R510		
Trichloroethene (TCE)	ND	1.0	µg/L	1 5/4/2018 9:26:00 PM R510		
Trichlorofluoromethane	ND	1.0	µg/L	1 5/4/2018 9:26:00 PM R510		
1,2,3-Trichloropropane	ND	2.0	µg/L	1 5/4/2018 9:26:00 PM R510		
Vinyl chloride	ND	1.0	µg/L	1 5/4/2018 9:26:00 PM R510		
Xylenes, Total	9.1	1.5	µg/L	1 5/4/2018 9:26:00 PM R510		
Surr: 1,2-Dichloroethane-d4	111	70-130	%Rec	1 5/4/2018 9:26:00 PM R510		
Surr: 4-Bromofluorobenzene	113	70-130	%Rec	1 5/4/2018 9:26:00 PM R510		
Surr: Dibromofluoromethane	109	70-130	%Rec	1 5/4/2018 9:26:00 PM R510		
Surr: Toluene-d8	112	70-130	%Rec	1 5/4/2018 9:26:00 PM R510		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detect
	D	Sample Diluted Due to Matrix	Е	Value above q
	Н	Holding times for preparation or analysis exceeded	J	Analyte detect
	ND	Not Detected at the Reporting Limit	Р	Sample pH No
	DOI		DI	D I D

PQL Practical Quanitative Limit

- S % Recovery outside of range due to dilution or matrix
- cted in the associated Method Blank
- quantitation range
- cted below quantitation limitsPage 12 of 23
- Not In Range
- Reporting Detection Limit RL
- Sample container temperature is out of limit as specified W

Analytical Report Lab Order 1804E35

Date Reported: 5/8/2018

CLIENT: Williams Four Corners	Client Sample ID: MW-1						
Project: Lateral L 2			Collection	Date: 4/27/2018 3:00:00 PM			
Lab ID: 1804E35-007	Matrix: (GROUNDWA	Received	Date: 4/28/2018 10:40:00 AM			
Analyses	Result	PQL Qual	Units	DF Date Analyzed Batch	h		
EPA METHOD 8260B: VOLATILES				Analyst: RAA	_		
Benzene	200	10	µg/L	10 5/7/2018 7:24:00 PM R510	91		
Toluene	ND	1.0	μg/L	1 5/4/2018 9:50:00 PM R510)47		
Ethylbenzene	5.2	1.0	μg/L	1 5/4/2018 9:50:00 PM R510)47		
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1 5/4/2018 9:50:00 PM R510)47		
1,2,4-Trimethylbenzene	2.2	1.0	μg/L	1 5/4/2018 9:50:00 PM R510)47		
1,3,5-Trimethylbenzene	2.1	1.0	μg/L	1 5/4/2018 9:50:00 PM R510)47		
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1 5/4/2018 9:50:00 PM R510)47		
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1 5/4/2018 9:50:00 PM R510)47		
Naphthalene	ND	2.0	µg/L	1 5/4/2018 9:50:00 PM R510)47		
1-Methylnaphthalene	ND	4.0	µg/L	1 5/4/2018 9:50:00 PM R510)47		
2-Methylnaphthalene	ND	4.0	μg/L	1 5/4/2018 9:50:00 PM R510)47		
Acetone	15	10	μg/L	1 5/4/2018 9:50:00 PM R510)47		
Bromobenzene	ND	1.0	µg/L	1 5/4/2018 9:50:00 PM R510)47		
Bromodichloromethane	ND	1.0	µg/L	1 5/4/2018 9:50:00 PM R510)47		
Bromoform	ND	1.0	μg/L	1 5/4/2018 9:50:00 PM R510)47		
Bromomethane	ND	3.0	μg/L	1 5/4/2018 9:50:00 PM R510)47		
2-Butanone	ND	10	μg/L	1 5/4/2018 9:50:00 PM R510)47		
Carbon disulfide	ND	10	μg/L	1 5/4/2018 9:50:00 PM R510)47		
Carbon Tetrachloride	ND	1.0	µg/L	1 5/4/2018 9:50:00 PM R510)47		
Chlorobenzene	ND	1.0	μg/L	1 5/4/2018 9:50:00 PM R510)47		
Chloroethane	ND	2.0	μg/L	1 5/4/2018 9:50:00 PM R510)47		
Chloroform	ND	1.0	μg/L	1 5/4/2018 9:50:00 PM R510)47		
Chloromethane	ND	3.0	μg/L	1 5/4/2018 9:50:00 PM R510)47		
2-Chlorotoluene	ND	1.0	μg/L	1 5/4/2018 9:50:00 PM R510)47		
4-Chlorotoluene	ND	1.0	μg/L	1 5/4/2018 9:50:00 PM R510)47		
cis-1,2-DCE	ND	1.0	μg/L	1 5/4/2018 9:50:00 PM R510)47		
cis-1,3-Dichloropropene	ND	1.0	μg/L	1 5/4/2018 9:50:00 PM R510)47		
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1 5/4/2018 9:50:00 PM R510)47		
Dibromochloromethane	ND	1.0	μg/L	1 5/4/2018 9:50:00 PM R510)47		
Dibromomethane	ND	1.0	μg/L	1 5/4/2018 9:50:00 PM R510)47		
1,2-Dichlorobenzene	ND	1.0	μg/L	1 5/4/2018 9:50:00 PM R510)47		
1,3-Dichlorobenzene	ND	1.0	μg/L	1 5/4/2018 9:50:00 PM R510			
1,4-Dichlorobenzene	ND	1.0	µg/L	1 5/4/2018 9:50:00 PM R510			
Dichlorodifluoromethane	ND	1.0	µg/L	1 5/4/2018 9:50:00 PM R510			
1,1-Dichloroethane	ND	1.0	µg/L	1 5/4/2018 9:50:00 PM R510			
1,1-Dichloroethene	ND	1.0	µg/L	1 5/4/2018 9:50:00 PM R510			
1,2-Dichloropropane	ND	1.0	μg/L	1 5/4/2018 9:50:00 PM R510			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

1.0

2.0

µg/L

µg/L

ND

ND

Qualifiers: * Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank

1

1

- E Value above quantitation range
- J Analyte detected below quantitation limits Page 13 of 23

5/4/2018 9:50:00 PM

5/4/2018 9:50:00 PM

R51047

R51047

- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1,3-Dichloropropane

2,2-Dichloropropane

Analytical Report Lab Order 1804E35

Date F	Reported:	5/8/201	8

CLIENT: Williams Four Corners		C	lient Sa	nple ID: MW-1	
Project: Lateral L 2			Collectio	on Date: 4/27/2018 3:00:00 PM	
Lab ID: 1804E35-007	Matrix:	GROUNDWA	Receiv	ed Date: 4/28/2018 10:40:00 AM	
Analyses	Result	PQL Qual	Units	DF Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES				Analyst	RAA
1,1-Dichloropropene	ND	1.0	µg/L	1 5/4/2018 9:50:00 PM	R51047
Hexachlorobutadiene	ND	1.0	µg/L	1 5/4/2018 9:50:00 PM	R51047
2-Hexanone	ND	10	µg/L	1 5/4/2018 9:50:00 PM	R51047
Isopropylbenzene	ND	1.0	µg/L	1 5/4/2018 9:50:00 PM	R51047
4-Isopropyltoluene	ND	1.0	µg/L	1 5/4/2018 9:50:00 PM	R51047
4-Methyl-2-pentanone	ND	10	µg/L	1 5/4/2018 9:50:00 PM	R51047
Methylene Chloride	ND	3.0	µg/L	1 5/4/2018 9:50:00 PM	R51047
n-Butylbenzene	ND	3.0	µg/L	1 5/4/2018 9:50:00 PM	R51047
n-Propylbenzene	ND	1.0	µg/L	1 5/4/2018 9:50:00 PM	R51047
sec-Butylbenzene	ND	1.0	µg/L	1 5/4/2018 9:50:00 PM	R51047
Styrene	ND	1.0	µg/L	1 5/4/2018 9:50:00 PM	R51047
tert-Butylbenzene	ND	1.0	µg/L	1 5/4/2018 9:50:00 PM	R51047
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1 5/4/2018 9:50:00 PM	R51047
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1 5/4/2018 9:50:00 PM	R51047
Tetrachloroethene (PCE)	ND	1.0	µg/L	1 5/4/2018 9:50:00 PM	R51047
trans-1,2-DCE	ND	1.0	µg/L	1 5/4/2018 9:50:00 PM	R51047
trans-1,3-Dichloropropene	ND	1.0	µg/L	1 5/4/2018 9:50:00 PM	R51047
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1 5/4/2018 9:50:00 PM	R51047
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1 5/4/2018 9:50:00 PM	R51047
1,1,1-Trichloroethane	ND	1.0	µg/L	1 5/4/2018 9:50:00 PM	R51047
1,1,2-Trichloroethane	ND	1.0	µg/L	1 5/4/2018 9:50:00 PM	R51047
Trichloroethene (TCE)	ND	1.0	µg/L	1 5/4/2018 9:50:00 PM	R51047
Trichlorofluoromethane	ND	1.0	µg/L	1 5/4/2018 9:50:00 PM	R51047
1,2,3-Trichloropropane	ND	2.0	µg/L	1 5/4/2018 9:50:00 PM	R51047
Vinyl chloride	ND	1.0	µg/L	1 5/4/2018 9:50:00 PM	R51047
Xylenes, Total	8.7	1.5	µg/L	1 5/4/2018 9:50:00 PM	R51047
Surr: 1,2-Dichloroethane-d4	112	70-130	%Rec	1 5/4/2018 9:50:00 PM	R51047
Surr: 4-Bromofluorobenzene	114	70-130	%Rec	1 5/4/2018 9:50:00 PM	R51047
Surr: Dibromofluoromethane	111	70-130	%Rec	1 5/4/2018 9:50:00 PM	R51047
Surr: Toluene-d8	111	70-130	%Rec	1 5/4/2018 9:50:00 PM	R51047

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Hall Environmental Analysis Laboratory, Inc.

В Analyte detected in the associated Method Blank

- Е Value above quantitation range
- Analyte detected below quantitation limit Page 14 of 23 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

*

D

Н

ND

S

Value exceeds Maximum Contaminant Level.

Holding times for preparation or analysis exceeded

% Recovery outside of range due to dilution or matrix

Sample Diluted Due to Matrix

PQL Practical Quanitative Limit

Not Detected at the Reporting Limit

Oualifiers:

Hall Environmental Analysis Laboratory, Inc.

Analytical Report Lab Order 1804E35

Date Reported: 5/8/2018

ъ

CLIENT: Williams Four Corners	Client Sample ID: MW-A
Project: Lateral L 2	Collection Date: 4/27/2018 3:30:00 PM
Lab ID: 1804E35-008	Matrix: GROUNDWAReceived Date: 4/28/2018 10:40:00 AM

~

TT •/

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	RAA
Benzene	200	10	µg/L	10	5/7/2018 7:48:00 PM	R51091
Toluene	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
Ethylbenzene	6.0	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
1,2,4-Trimethylbenzene	1.6	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
1,3,5-Trimethylbenzene	1.7	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
1,2-Dichloroethane (EDC)	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
Naphthalene	ND	2.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
1-Methylnaphthalene	ND	4.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
2-Methylnaphthalene	ND	4.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
Acetone	25	10	µg/L	1	5/4/2018 10:14:00 PM	R51047
Bromobenzene	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
Bromodichloromethane	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
Bromoform	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
Bromomethane	ND	3.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
2-Butanone	ND	10	µg/L	1	5/4/2018 10:14:00 PM	R51047
Carbon disulfide	ND	10	µg/L	1	5/4/2018 10:14:00 PM	R51047
Carbon Tetrachloride	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
Chlorobenzene	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
Chloroethane	ND	2.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
Chloroform	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
Chloromethane	ND	3.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
2-Chlorotoluene	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
4-Chlorotoluene	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
cis-1,2-DCE	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
Dibromochloromethane	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
Dibromomethane	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
1,2-Dichlorobenzene	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
1,3-Dichlorobenzene	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
1,4-Dichlorobenzene	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
Dichlorodifluoromethane	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
1,1-Dichloroethane	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
1,1-Dichloroethene	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
1,2-Dichloropropane	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
1,3-Dichloropropane	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
2,2-Dichloropropane	ND	2.0	μg/L	1	5/4/2018 10:14:00 PM	R51047

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to Matrix
 - H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 15 of 23
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Analytical Report Lab Order 1804E35

Date Reported:	5/8/2018
Dute Reported.	0/0/2010

Lab ID:	1804E35-008	Matrix:	GROUNDWA	Received Dat	e: 4/28/2018 10:40:00 AM	
Project:	Lateral L 2			Collection Dat	e: 4/27/2018 3:30:00 PM	
CLIENT:	Williams Four Corners			Client Sample I	D: MW-A	

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	RAA
1,1-Dichloropropene	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
Hexachlorobutadiene	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
2-Hexanone	ND	10	µg/L	1	5/4/2018 10:14:00 PM	R51047
Isopropylbenzene	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
4-Isopropyltoluene	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
4-Methyl-2-pentanone	ND	10	µg/L	1	5/4/2018 10:14:00 PM	R51047
Methylene Chloride	ND	3.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
n-Butylbenzene	ND	3.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
n-Propylbenzene	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
sec-Butylbenzene	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
Styrene	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
tert-Butylbenzene	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
trans-1,2-DCE	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
1,1,1-Trichloroethane	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
1,1,2-Trichloroethane	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
Trichloroethene (TCE)	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
Trichlorofluoromethane	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
1,2,3-Trichloropropane	ND	2.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
Vinyl chloride	ND	1.0	µg/L	1	5/4/2018 10:14:00 PM	R51047
Xylenes, Total	9.4	1.5	µg/L	1	5/4/2018 10:14:00 PM	R51047
Surr: 1,2-Dichloroethane-d4	112	70-130	%Rec	1	5/4/2018 10:14:00 PM	R51047
Surr: 4-Bromofluorobenzene	116	70-130	%Rec	1	5/4/2018 10:14:00 PM	R51047
Surr: Dibromofluoromethane	110	70-130	%Rec	1	5/4/2018 10:14:00 PM	R51047
Surr: Toluene-d8	113	70-130	%Rec	1	5/4/2018 10:14:00 PM	R51047

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Ana
	D	Sample Diluted Due to Matrix	E	Val
	Н	Holding times for preparation or analysis exceeded	J	Ana
	ND	Not Detected at the Reporting Limit	Р	San
	PQL	Practical Quanitative Limit	RL	Rep
	S	% Recovery outside of range due to dilution or matrix	W	San

Released to Imaging: 11/5/2024 1:18:12 PM

- Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 16 of 23
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

.

Analytical Report Lab Order 1804E35

Date	Reported:	5/8/2018
Date	Reponeu.	5/0/2010

Hall Environmental Analys	is Labora	tory, Inc.			Lab Order 1804E35 Date Reported: 5/8/2018	8	
CLIENT: Williams Four Corners Project: Lateral L 2 Lab ID: 1804E35-009	Client Sample ID: Trip Blank Collection Date: Matrix: AQUEOUS Received Date: 4/28/2018 10:40:00 AM						
Analyses	Result	PQL Qua	al Units	DF	Date Analyzed	Batch	
EPA METHOD 8260B: VOLATILES					Analyst	RAA	
Benzene	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
Toluene	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
Ethylbenzene	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
1,3,5-Trimethylbenzene	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
1,2-Dichloroethane (EDC)	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
Naphthalene	ND	2.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
1-Methylnaphthalene	ND	4.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
2-Methylnaphthalene	ND	4.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
Acetone	ND	10	µg/L	1	5/4/2018 10:38:00 PM	R51047	
Bromobenzene	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
Bromodichloromethane	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
Bromoform	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
Bromomethane	ND	3.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
2-Butanone	ND	10	µg/L	1	5/4/2018 10:38:00 PM	R51047	
Carbon disulfide	ND	10	µg/L	1	5/4/2018 10:38:00 PM	R51047	
Carbon Tetrachloride	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
Chlorobenzene	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
Chloroethane	ND	2.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
Chloroform	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
Chloromethane	ND	3.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
2-Chlorotoluene	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
4-Chlorotoluene	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
cis-1,2-DCE	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
Dibromochloromethane	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
Dibromomethane	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
1,2-Dichlorobenzene	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
1,3-Dichlorobenzene	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
1,4-Dichlorobenzene	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
Dichlorodifluoromethane	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
1,1-Dichloroethane	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
1,1-Dichloroethene	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
1,2-Dichloropropane	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
1,3-Dichloropropane	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047	
2,2-Dichloropropane	ND	2.0	μg/L	1	5/4/2018 10:38:00 PM	R51047	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Oualifiers: * Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limit Page 17 of 23 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

Analytical Report
Lab Order 1804E35

CLIENT: Williams Four Corners	Client Sample ID: Trip Blank Collection Date:									
Project: Lateral L 2										
Lab ID: 1804E35-009	Matrix:	AQUEOUS	Date: 4/2	28/2018 10:40:00 AM						
Analyses	Result	PQL Qual	Units	DF	Date Analyzed	Batch				
EPA METHOD 8260B: VOLATILES					Analyst	RAA				
1,1-Dichloropropene	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047				
Hexachlorobutadiene	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047				
2-Hexanone	ND	10	µg/L	1	5/4/2018 10:38:00 PM	R51047				
Isopropylbenzene	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047				
4-Isopropyltoluene	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047				
4-Methyl-2-pentanone	ND	10	µg/L	1	5/4/2018 10:38:00 PM	R51047				
Methylene Chloride	ND	3.0	µg/L	1	5/4/2018 10:38:00 PM	R51047				
n-Butylbenzene	ND	3.0	µg/L	1	5/4/2018 10:38:00 PM	R51047				
n-Propylbenzene	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047				
sec-Butylbenzene	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047				
Styrene	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047				
tert-Butylbenzene	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047				
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047				
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	5/4/2018 10:38:00 PM	R51047				
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047				
trans-1,2-DCE	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047				
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047				
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047				
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047				
1,1,1-Trichloroethane	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047				
1,1,2-Trichloroethane	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047				
Trichloroethene (TCE)	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047				
Trichlorofluoromethane	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047				
1,2,3-Trichloropropane	ND	2.0	µg/L	1	5/4/2018 10:38:00 PM	R51047				
Vinyl chloride	ND	1.0	µg/L	1	5/4/2018 10:38:00 PM	R51047				
Xylenes, Total	ND	1.5	µg/L	1	5/4/2018 10:38:00 PM	R51047				
Surr: 1,2-Dichloroethane-d4	114	70-130	%Rec	1	5/4/2018 10:38:00 PM	R51047				
Surr: 4-Bromofluorobenzene	115	70-130	%Rec	1	5/4/2018 10:38:00 PM	R51047				
Surr: Dibromofluoromethane	111	70-130	%Rec	1	5/4/2018 10:38:00 PM	R51047				
Surr: Toluene-d8	115	70-130	%Rec	1	5/4/2018 10:38:00 PM	R51047				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 18 of 23
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Client: Williams Project: Lateral L	Four Corn 2	iers								
Sample ID 100ng lcs	SampT	ype: LC	s	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	n ID: R5	1047	R	unNo: 5	51047				
Prep Date:	Analysis D	ate: 5/	4/2018	S	eqNo: 1	657986	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	106	70	130			
Toluene	23	1.0	20.00	0	114	70	130			
Chlorobenzene	23	1.0	20.00	0	115	70	130			
1,1-Dichloroethene	22	1.0	20.00	0	108	70	130			
Trichloroethene (TCE)	21	1.0	20.00	0	105	70	130			
Surr: 1,2-Dichloroethane-d4	11		10.00		112	70	130			
Surr: 4-Bromofluorobenzene	12		10.00		116	70	130			
Surr: Dibromofluoromethane	11		10.00		110	70	130			
Surr: Toluene-d8	11		10.00		112	70	130			
Sample ID rb	SampT	ype: ME	LK	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	n ID: R5	1047	R	unNo: 5	51047				
Prep Date:	Analysis D	ate: 5/	4/2018	S	eqNo: 1	658053	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND ND	4.0								
2-Methylnaphthalene Acetone	ND ND	4.0 10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 19 of 23

WO#: 1804E35

08-May-18

Client: W	illiams Four Cor	ners								
Project: La	ateral L 2									
Sample ID rb	Samp	Гуре: MBLK	Too		lethod 8260B					
Client ID: PBW		h ID: R51047	TestCode: EPA Method 8260B: VOLATILES RunNo: 51047							
Prep Date:		Date: 5/4/2018		SeqNo: 16580		ua/I				
Analyte	Result		SPK Ref Val	%REC Lov	wLimit HighL	imit %RPD	RPDLimit	Qual		
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane		2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
.,_,o										

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

08-May-18

1804E35

WO#:

Page 20 of 23

Client: William Project: Lateral	ns Four Corr L 2	ners								
Sample ID rb		ype: ME	N K	Tes	tCode: F	PA Method	8260B: VOL	ATII ES		
Client ID: PBW		וD: R5			RunNo: 5		02008. VOL	AIILLO		
Prep Date:	Analysis D				SeqNo: 1		Units: µg/L			
				SPK Ref Val	•			0/ 000		Qual
Analyte Vinyl chloride	Result ND	PQL 1.0	SPR value	SPK Rei vai	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Xylenes, Total	ND	1.0								
Surr: 1,2-Dichloroethane-d4	11	1.5	10.00		112	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		112	70	130			
Surr: Dibromofluoromethane	11		10.00		108	70	130			
Surr: Toluene-d8	11		10.00		115	70	130			
Sample ID 100ng Ics	SampT	ype: LC	S	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: LCSW		n ID: R5			RunNo: 5					
Prep Date:	Analysis D				SeqNo: 1		Units: µg/L			
Analyte	Result	PQL		SPK Ref Val	· %REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	22	1.0	20.00	0	111	70	130			Quai
Toluene	23	1.0	20.00	0	116	70	130			
Chlorobenzene	24	1.0	20.00	0	118	70	130			
1.1-Dichloroethene	22	1.0	20.00	0	112	70	130			
Trichloroethene (TCE)	22	1.0	20.00	0	112	70	130			
Surr: 1,2-Dichloroethane-d4	11	1.0	10.00	Ũ	113	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		114	70	130			
Surr: Dibromofluoromethane	11		10.00		109	70	130			
Surr: Toluene-d8	11		10.00		110	70	130			
Sample ID RB	SampT	ype: ME	N K	Tes	tCode: F	PA Method	8260B: VOL	ATII ES		
Client ID: PBW		1 ID: R5			RunNo: 5		02000. 102			
Prep Date:	Analysis D				SeqNo: 1		Units: µg/L			
Analyte	Result	PQL		SPK Ref Val	· %REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	4.0 10								
Bromobenzene	ND	1.0								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 21 of 23

WO#: 1804E35

Client:	Williams Four Cor	ners									
Project:	Lateral L 2										
Sample ID RB	Samo	Гуре: MBLK	Teo	stCode: EPA Meth	od 8260B+ VOI	ATIL ES					
Client ID: PBW		h ID: R51091		TestCode: EPA Method 8260B: VOLATILES RunNo: 51091							
Prep Date:		Date: 5/7/2018		SeqNo: 1659463							
Analyte	Result	PQL SPK value	e SPK Ref Val	%REC LowLir	Units: µg/L nit HighLimit	%RPD	RPDLimit	Qual			
Bromodichloromethane	ND	1.0			0						
Bromoform	ND	1.0									
Bromomethane	ND	3.0									
2-Butanone	ND	10									
Carbon disulfide	ND	10									
Carbon Tetrachloride	ND	1.0									
Chlorobenzene	ND	1.0									
Chloroethane	ND	2.0									
Chloroform	ND	1.0									
Chloromethane	ND	3.0									
2-Chlorotoluene	ND	1.0									
4-Chlorotoluene	ND	1.0									
cis-1,2-DCE	ND	1.0									
cis-1,3-Dichloropropene	ND	1.0									
1,2-Dibromo-3-chloroprop	ane ND	2.0									
Dibromochloromethane	ND	1.0									
Dibromomethane	ND	1.0									
1,2-Dichlorobenzene	ND	1.0									
1,3-Dichlorobenzene	ND	1.0									
1,4-Dichlorobenzene	ND	1.0									
Dichlorodifluoromethane	ND	1.0									
1,1-Dichloroethane	ND	1.0									
1,1-Dichloroethene	ND	1.0									
1,2-Dichloropropane	ND	1.0									
1,3-Dichloropropane	ND	1.0									
2,2-Dichloropropane	ND	2.0									
1,1-Dichloropropene	ND	1.0									
Hexachlorobutadiene	ND	1.0									
2-Hexanone	ND	10									
Isopropylbenzene	ND	1.0									
4-Isopropyltoluene	ND	1.0									
4-Methyl-2-pentanone	ND	10									
Methylene Chloride	ND	3.0									
n-Butylbenzene	ND	3.0									
n-Propylbenzene	ND	1.0									
sec-Butylbenzene	ND	1.0									
Styrene	ND	1.0									
tert-Butylbenzene	ND	1.0									
1,1,1,2-Tetrachloroethane	ND	1.0									

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1804E35

08-May-18

WO#:

Page 22 of 23

	Williams Four Con Lateral L 2	rners								
Sample ID RB	Samp	Type: ME	BLK	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Bate	ch ID: R5	1091	F	RunNo: 5	1091				
Prep Date:	Analysis	Date: 5/	7/2018	S	SeqNo: 1	659463	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethan	e-d4 12		10.00		116	70	130			
Surr: 4-Bromofluoroben	zene 11		10.00		113	70	130			
Surr: Dibromofluoromet	hane 12		10.00		115	70	130			
Surr: Toluene-d8	11		10.00		113	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 23 of 23

WO#:	1804E35
	08-May-18

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Ai TEL: 505-345-39	al Analysis Laborat 4901 Hawkins Ibuquerque, NM 87 75 FAX: 505-345-4 hallenvironmental.e	NE 109 Sam 107	ipie Log-In C	Check List
Client Name: WILLIAMS FOUR CORN	Work Order Numbe	er: 1804E35		RcptNo	: 1
Received By: Andy Freeman	4/28/2018 10:40:00 /	AM_	and and the		н М
Completed By: Anne Thorne Reviewed By: ENM Labeled by 04(30117	4/30/2018 12:37:01 1 4/30/18	PM	Anne Han		
Chain of Custody	-	· · · ·		· · · ·	
1. Is Chain of Custody complete?		Yes 🗹	No 🗌	Not Present	
2. How was the sample delivered?		<u>Courier</u>			
Log In					
3. Was an attempt made to cool the samples?	,	Yes 🗹	No 🗌		
4. Were all samples received at a temperature	of >0° C to 6.0°C	Yes 🔽	No 🗌	NA 🗔	
5. Sample(s) in proper container(s)?		Yes 🔽	No 🗌	· · ·	
6. Sufficient sample volume for indicated test(s	i)?	Yes 🔽	No 🗌		
7. Are samples (except VOA and ONG) proper	ly preserved?	Yes 🗹	No 🗌		
8. Was preservative added to bottles?		Yes	No 🗹	NA 🗌	
9. VOA vials have zero headspace?		Yes 🗹	No 🗌	No VOA Vials 🗌	
10, Were any sample containers received broke	en?	Yes	No 🗹 🛛	# of preserved bottles checked	
11. Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Yes 🗹	No 🗌	for pH:	>12 unless noted)
12. Are matrices correctly identified on Chain of	Custody?	Yes 🗹	No 🗆	Adjusted?	
13. Is it clear what analyses were requested?	ι.	Yes 🗹 🛛	No 🗌	-	
14. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes 🗹	No 🗌	Checked by:	
Special Handling (if applicable)					
15. Was client notified of all discrepancies with	this order?	Yes	No 🗌	NA 🗹	· ·
Person Notified:	Date				
By Whom: Regarding:	Via:	eMailPh	one 🗌 Fax	In Person	
Client Instructions:					
16. Additional remarks:				· · ·	<u>_</u>
17. <u>Cooler Information</u> <u>Cooler No</u> Temp ^o C Condition So 1 3.1 Good Yes		Seal Date	Signed By	-	

Page 1 of 1

ALLENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107	([†] OS' [†] Od' ² (SWIS) (OXW / OXC	AT HE ADDRESS (COLUND) BTEX + MTBE + TPI BTEX + MTBE + TPI TPH 8015B (GRO / I TPH (Method 504.1) PPH's (8310 or 8270 PAH's (8310 or 8270 PAH's (8310 or 8270 PAH's (8310 or 8270 POL OR 200 POL OR 200	X					Remarks: please run 82003	Cc: dbwnSC Herv.com
Turn-Around Time: X Standard □ Rush Project Name: Lateral L-2 Project #:	기 入	Sampler: Josy Aven > On Ice: * 承 Yes I No Sample Temperature: 3 / * C こ, *C Container Type and # Type Mo4 E3S	3 vorts Hacl Tool	202	NO2	- 302- 	20	Nut Und 4/27/18 1616	Received by Date Time Date Time Acceleration of the Time Time The The The Time Time The Time The Time Time The Time Time Time Time Time Time Time Tim
Nilliams Faur Comers Maron Saler Adress:	email or Fax#: aaron. galer @ willians.com Project Manager: aA/QC Package: Candidation = Level 4 (Full Validation)	Other Other Matrix Sample Request ID	6W MW-2	1315 MW-G	1356 MW-3 1425 MW-4	1. 11535 1535 MW-5	The Blank	Time: Relinquished by CLUND	Relindquished by: Relinding to the Martine Martine Martine Content of the Submitted to Hall Environmental may be subcor-

Received by OCD: 3/23/2022 11:04:47 AM

December 22, 2021

Brooke Herb Harvest 1755 Arroyo Dr. Bloomfield, NM 87413 TEL: (505) 632-4475 FAX: Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

RE: Lateral L2

OrderNo.: 2112746

Dear Brooke Herb:

Hall Environmental Analysis Laboratory received 5 sample(s) on 12/10/2021 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report Lab Order 2112746

Hall Environmental	Analysis	Laboratory.	Inc.
	•		

Date Reported: 1	12/22/2021
------------------	------------

CLIENT:	Harvest			С	lient S	ample I	D: M	W-2	
Project:	Lateral L2				Collect	tion Dat	e: 12/	/8/2021 2:25:00 PM	
Lab ID:	2112746-001	Matri	ix: GROUN	DWA	Recei	ved Dat	e: 12/	/10/2021 7:30:00 AN	1
Analyses			Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA MET	HOD 8260: VOLATILES	SHORT LIST						Analy	st: CCM
Deve				4.0				40/45/0004 7.05.00 D	

Benzene	ND	1.0	µg/L	1	12/15/2021 7:25:00 PM R84549
Toluene	ND	1.0	µg/L	1	12/15/2021 7:25:00 PM R84549
Ethylbenzene	ND	1.0	µg/L	1	12/15/2021 7:25:00 PM R84549
Xylenes, Total	ND	1.5	µg/L	1	12/15/2021 7:25:00 PM R84549
Surr: 1,2-Dichloroethane-d4	98.7	70-130	%Rec	1	12/15/2021 7:25:00 PM R84549
Surr: Dibromofluoromethane	103	70-130	%Rec	1	12/15/2021 7:25:00 PM R84549
Surr: Toluene-d8	98.0	70-130	%Rec	1	12/15/2021 7:25:00 PM R84549

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 1 of 7

Ethylbenzene

Xylenes, Total

Surr: Toluene-d8

Surr: 1,2-Dichloroethane-d4

Surr: Dibromofluoromethane

Analytical Report Lab Order 2112746

Hall Environmental	Analysis	Laboratory.	Inc.
	•		

Date Reported: 12/22/2021

12/15/2021 7:49:00 PM R84549

12/15/2021 7:49:00 PM R84549 12/15/2021 7:49:00 PM R84549

12/15/2021 7:49:00 PM R84549

12/15/2021 7:49:00 PM R84549

CLIENT:	: Harvest		Clien	t Sample I	D: M	W-3	
Project:	Lateral L2		Coll	lection Dat	t e: 12	/8/2021 2:35:00 PM	
Lab ID:	2112746-002	Matrix: GROUNI	OWA Re	ceived Dat	t e: 12	/10/2021 7:30:00 AM	[
Analyses	3	Result	RL Qu	ıal Units	DF	Date Analyzed	Batch
EPA ME	THOD 8260: VOLATILES	SHORT LIST				Analys	st: CCM
Benzene	e	ND	1.0	µg/L	1	12/15/2021 7:49:00 PI	M R84549
Toluene		ND	1.0	µg/L	1	12/15/2021 7:49:00 PI	M R84549

ND

ND

99.3

102

95.8

µg/L

µg/L

%Rec

%Rec

%Rec

1.0

1.5

70-130

70-130

70-130

1

1

1

1

1

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 2 of 7

Ethylbenzene

Xylenes, Total

Surr: Toluene-d8

Surr: 1,2-Dichloroethane-d4

Surr: Dibromofluoromethane

Analytical Report Lab Order 2112746

Hall Environmental	Analysis	Laboratory,	Inc.

Lab Order 2112746

Date Reported: 12/22/2021

12/15/2021 9:22:00 PM R84549

12/15/2021 9:22:00 PM R84549 12/15/2021 9:22:00 PM R84549

12/15/2021 9:22:00 PM R84549

12/15/2021 9:22:00 PM R84549

CLIENT	: Harvest		Clien	t Sample I	D: M	W-5	
Project:	Lateral L2		Col	lection Dat	e: 12	2/8/2021 2:45:00 PM	
Lab ID:	2112746-003	Matrix: GROUND	WA Re	ceived Dat	e: 12	2/10/2021 7:30:00 AM	[
Analyses	5	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA ME	THOD 8260: VOLATILES	S SHORT LIST				Analys	st: CCM
Benzene	e	ND	1.0	µg/L	1	12/15/2021 9:22:00 PI	M R84549
Toluene	1	ND	1.0	µg/L	1	12/15/2021 9:22:00 PI	M R84549

ND

ND

99.0

101

97.9

µg/L

µg/L

%Rec

%Rec

%Rec

1

1

1

1

1

1.0

1.5

70-130

70-130

70-130

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 7

Xylenes, Total

Surr: Toluene-d8

Surr: 1,2-Dichloroethane-d4

Surr: Dibromofluoromethane

Analytical Report Lab Order 2112746

Hall Environmental	Analysis	Laboratory,	Inc.

Date Reported: 12/22/2021

12/15/2021 9:45:00 PM R84549

12/15/2021 9:45:00 PM R84549

12/15/2021 9:45:00 PM R84549

12/15/2021 9:45:00 PM R84549

CLIENT	: Harvest		Clien	t Sample II): M	W-6	
Project:	Lateral L2		Col	lection Date	e: 12	/8/2021 2:15:00 PM	
Lab ID:	2112746-004	Matrix: GROUND	WA Re	eceived Date	e: 12	/10/2021 7:30:00 AM	
Analyses	5	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA ME	THOD 8260: VOLATILES	SHORT LIST				Analys	t: CCM
Benzene	e	ND	1.0	µg/L	1	12/15/2021 9:45:00 PM	1 R84549
Toluene	•	ND	1.0	µg/L	1	12/15/2021 9:45:00 PM	1 R84549
Ethylber	nzene	ND	1.0	µg/L	1	12/15/2021 9:45:00 PM	1 R84549

ND

100

105

96.3

1.5

70-130

70-130

70-130

µg/L

%Rec

%Rec

%Rec

1

1

1

1

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits Sample pH Not In Range
- Р Reporting Limit
- RL

Page 4 of 7

Surr: Dibromofluoromethane

Surr: Toluene-d8

Analytical Report Lab Order 2112746

Hall Environmental	Analysis	Laboratory	, Inc.
	•		/

Date Reported: 12/22/2021

12/15/2021 10:09:00 PM R84549

12/15/2021 10:09:00 PM R84549

CLIENT: Harvest		Client	Sample I	D: M	W-7	
Project: Lateral L2		Coll	ection Dat	e: 12	/8/2021 2:00:00 PM	
Lab ID: 2112746-005	Matrix: GROUN	NDWA Re	ceived Dat	e: 12	/10/2021 7:30:00 AM	
Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260: VOLATILES S	HORT LIST				Analys	st: CCM
Benzene	ND	1.0	µg/L	1	12/15/2021 10:09:00 F	
Delizene		1.0	µg/∟		12/10/2021 101001001	PM R84549
Toluene	ND	1.0	μg/L	1	12/15/2021 10:09:00 F	
	ND	-		1 1		PM R84549
Toluene		1.0	μg/L	1 1 1	12/15/2021 10:09:00 F	PM R84549 PM R84549

102

97.2

70-130

70-130

%Rec

%Rec

1

1

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 5 of 7

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#:	2112746
	22 Dec 21

22-Dec-21

	vest eral L2									
Sample ID: 100ng Ics		Type: LC	S	Tes	tCode: El	PA Method	8260: Volatile	es Short L	ist	
Client ID: LCSW		ch ID: R8		F	RunNo: 8	4549				
Prep Date:		Date: 12			SeqNo: 2973445 Units: µg/					
•	-									Qual
Analyte Benzene	Result 19	PQL 1.0	20.00	SPK Ref Val 0	%REC 97.3	LowLimit 70	HighLimit 130	%RPD	RPDLimit	Qual
Toluene	20	1.0	20.00	0	97.3 98.6	70	130			
Surr: 1,2-Dichloroethane-d4	9.6	1.0	10.00	0	96.4	70	130			
Surr: 4-Bromofluorobenzene			10.00		90.4 97.4	70	130			
Surr: Dibromofluoromethane	-		10.00		-					
					99.0	70	130			
Surr: Toluene-d8	9.8		10.00		97.7	70	130			
Sample ID: mb	Samp	Type: ME	BLK	Tes	tCode: El	PA Method	8260: Volatile	es Short L	.ist	
Client ID: PBW	Bate	ch ID: R8	4549	F	RunNo: 8	4549				
Prep Date:	Analysis	Date: 12	2/15/2021	S	SeqNo: 2	973446	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Foluene	ND	1.0								
Ethylbenzene	ND	1.0								
(ylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.8		10.00		98.0	70	130			
Surr: 4-Bromofluorobenzene	9.8		10.00		98.0	70	130			
Surr: Dibromofluoromethane			10.00		102	70	130			
Surr: Toluene-d8	9.7		10.00		96.7	70	130			
Sample ID: 2112746-00	2AMS Same	Type: MS	3	Tes	tCode: F I	PA Method	8260: Volatile	es Short I	ist	
Client ID: MW-3	·	ch ID: R8			RunNo: 8		0200. Volutin			
Prep Date:		Date: 12			SeqNo: 2		Units: µg/L			
	-									Qual
Analyte	Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	102	70	130			
oluene	20	1.0	20.00	0	101	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		100	70	130			
Surr: Dibromofluoromethane			10.00		103	70	130			
Surr: Toluene-d8	9.8		10.00		97.8	70	130			
Sample ID: 2112746-00	2AMSD Samp	Туре: М	SD	Tes	tCode: El	PA Method	8260: Volatile	es Short L	.ist	
Client ID: MW-3	Bate	Batch ID: R84549 RunNo: 84549								
Prep Date:	Analysis	Date: 12	2/15/2021	S	SeqNo: 2	973915	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	99.2	70	130	2.63	20	
Toluene	19	1.0	20.00	0	96.2	70	130	4.55	20	
Surr: 1,2-Dichloroethane-d4	9.9		10.00		99.4	70	130	0	0	
Qualifiers										

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix interference S

Analyte detected in the associated Method Blank в

Е Value above quantitation range

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit

Page 79 of 102

	WO#:	2112746
Inc.		22-Dec-21

Client:HarvestProject:Lateral L2

Sample ID: 2112746-002AM	SD SampT	SampType: MSD			TestCode: EPA Method 8260: Volatiles Short List						
Client ID: MW-3	Batch	n ID: R8	84549	F	RunNo: 8 4	4549					
Prep Date:	Analysis D	ate: 12	2/15/2021	5	SeqNo: 2	973915	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Surr: 4-Bromofluorobenzene	9.8		10.00		97.6	70	130	0	0		
Surr: Dibromofluoromethane	10		10.00		102	70	130	0	0		
Surr: Toluene-d8	9.7		10.00		96.7	70	130	0	0		

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 7

Released to Imaging: 11/5/2024 1:18:12 PM

Page	00	~	£ 1	<u>n</u>
PAPP	011	11		112

	RONMENTAL Ysis Wratory	TEL: 505-345-3 Website: clien	Albuquerqu 3975 FAX: 5		Sa	mple Log-In Check List
Client Name:	Harvest	Work Order Num	ber: 2112	746		RcptNo: 1
Received By:	Tracy Casarrubias	12/10/2021 7:30:00	0 AM			
Completed By:	Sean Livingston	12/10/2021 9:50:4	7 AM	<	Sal	not
Reviewed By:	JN HO 12/10 Stody JN12/11	k1				<i>v</i>
Chain of Cu	stody	121				
1. Is Chain of C	Custody complete?		Yes	✓	No 🗌	Not Present
2. How was the	e sample delivered?		Courie	er		
Log In 3. Was an atter	mpt made to cool the sample	s?	Yes	v 1	No 🗌	
4. Were all sam	ples received at a temperatu	re of >0° C to 6.0°C	Yes		No 🗌	
5. Sample(s) in	proper container(s)?		Yes		No 🗌	
6. Sufficient sar	nple volume for indicated tes	t(s)?	Yes		lo 🗌	
7. Are samples	(except VOA and ONG) prop	erly preserved?	Yes		lo 🗌	
8. Was preserva	ative added to bottles?		Yes [lo 🔽	NA 🗌
9. Received at l	east 1 vial with headspace <	1/4" for AQ VOA?	Yes		lo 🗌	
10. Were any sa	mple containers received bro	ken?	Yes [1	No 🔽	# of preserved bottles checked
(Note discrep	ork match bottle labels? bancies on chain of custody)		Yes		lo 🗌	for pH: (<2 or >12 unless noted)
	correctly identified on Chain	of Custody?	Yes			Adjusted?
	at analyses were requested? ing times able to be met?		Yes	_		Chooked by:
	customer for authorization.)		Yes		lo 🗌	Checked by: Che 12/10/01
Special Hand	ling (if applicable)					
15. Was client n	otified of all discrepancies wit	th this order?	Yes	1	No 🗌	NA 🗹
Person	Notified:	Date	:	F 2010 NEW YORK OF BUILD NO.	-itrastation	
By Wh	om:	Via:	🗌 eMai	Phone	🗌 Fax	In Person
Regard	ding:		1000			
Client I	Instructions:					
16. Additional re	emarks:					
17. Cooler Info						
Cooler No		Seal Intact Seal No	Seal Dat	e Signe	ed By	
1	2.3 Good					

Hall Environmental Analysis Laboratory

Page 1 of 1

Received by OCD: 3/23/2022 11:04:47 AM

Recei): 3/2	23/20	022 1	1:04	4:47 /	AM															4				age 81	of 102
	HALL ENVIRONMENTAL	ANALYSIS LABORATORY																											port
	AIEN	RA		109	2001		-														-	-	$\left \right $				4		alvtical re
	NO	BO	com	Albuqueraue. NM 87109	505-345-4107	est	(11	iəsar	//IU	iəsə	JA)) W.	101110	D letoT														Cow	on the an
	IR		www.hallenvironmental.com	raue	05-34	Request					12198	_	5/89.	S) 0728						-		-	-			-	-		notated
	N	SIS	ironr	anono	Fax	/sis F							(AO	V) 0928													1	3	clearly
	Ш	ž	allenv	ĩ		Anal	[⊅] O	S '≉O	Ъ	10 ⁵				CI' E' E										3				9 110	a will be
	ALI	MAN	d.ww	s NE	-3975			SIMI	50	178		_		a ehag 3 AADF	-	_		-	-	-	-						-	arl	cted data
	Ī	4	3	4901 Hawkins NE	505-345-3975			074	00					W) 803			-			-	-							eric. carron & usp.	-contrac
		Π	-	01 Ha	Tel. 50			s'80	ЪС	280	8/s	əbi	oitee	9 1808	1													eri	Anv sub
I				49	Ť		-							08:H9T													Remarks:	CC:	ibility.
Г					1		()	S08)	s'6	TME	-+-	8E 		XETE) >	X	×	X									Rer		lis poss
													()°) 8.	- No.	100	200	003	FOO	200				-				Time	Time	s notice of th
								ws?			ON 🗆		-8~2.	HEAL No.				0	0								Date [2/a].	Date 12/10/21	his serves as
		۳ ۳					12	Z,		~			e.	e e						-	-							12	o ies. T
e:				77				Herb.		COVVOI	Yes		Ing CF): 2	Preservative Type	HC1	-67.87	Rectar 1		X	98P				5 .74	1. 10	P.		Sice A	ed laborat
d Time:		٦	ne:	10			ager:			E		11.00	D(includ	Pre Tvp	. I			-									Via:	Via:C	accredit
Turn-Around T	i	A Standard	oject Nan	Lateral	Project #:		oject Mar	Brooke		Sampler:	On Ice:	# of Coolers:	Cooler Temp(including CF):	Container Type and #	3 VOA	-			A								Received by:	Received by:	acted to other
Ĩ			<u>1</u>		Ъ		Pr			ŝ	ō	#	ŏ	ŭ ²	· (^)												Rec	Rec	ubcontra
prod	5	COINERS					harvest mid Stenn.com Project Manag		Level 4 (Full Validation)					e													~	$\left \right\rangle$	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Chain-of-Onetody Bocord			105					ļ	el 4 (Full	e				Sample Name	として	MW-3	W-5	MW-6	Linn								TH NO		tall Environm
i etor	naro.	FOUN	Haves				ayes e	-		Az Compliance	-			Samp	8	12	MW	MI	Ś								ied by:	led by:	submitted to H
Ú-jú		Torvest	Darley				email or Fax#: Oakley. Hayes			🗆 Az C(□ Other		1	Matrix	M-0			,	7								Relinquished by:	Relinquished by:	samples sut
- uic q		40	OC	Mailing Address:		#:	r Fax#:⊘	QA/QC Package:	dard	tation:	AC	EDD (Type)		Time	58:HI	14:35	5h: H!	14:15	h;cu								Time: אילטל	Time:	f necessary.
Relea	Clien			Mailing		Phone #:	email o	QA/QC1	K Standard	Accreditation:				Date	8-01			//	¥								Date: 12-9	Date:	12/06.

January 20, 2022 Brooke Herb Harvest 1755 Arroyo Dr. Bloomfield, NM 87413 TEL: (505) 632-4475 FAX Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

OrderNo.: 2201617

Dear Brooke Herb:

RE: Lateral L2

Hall Environmental Analysis Laboratory received 6 sample(s) on 1/15/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2201617

Date Reported: 1/20/2022

CLIENT:	Harvest	(Client Sample ID: HP01
Project:	Lateral L2		Collection Date: 1/12/2022 11:30:00 AM
Lab ID:	2201617-001	Matrix: GROUNDWA	Received Date: 1/15/2022 8:11:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8015M/D: DIESEL RANGE					Analyst	: SB
Diesel Range Organics (DRO)	ND	1.4	mg/L	1	1/19/2022 2:24:31 PM	65057
Motor Oil Range Organics (MRO)	ND	7.0	mg/L	1	1/19/2022 2:24:31 PM	65057
Surr: DNOP	84.6	64.8-167	%Rec	1	1/19/2022 2:24:31 PM	65057
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	1/18/2022 10:03:39 AN	G85236
Surr: BFB	94.8	68.5-136	%Rec	1	1/18/2022 10:03:39 AN	G85236
EPA METHOD 8021B: VOLATILES					Analyst	II NSB
Benzene	ND	1.0	µg/L	1	1/18/2022 10:03:39 AN	B85236
Toluene	ND	1.0	μg/L	1	1/18/2022 10:03:39 AN	B85236
Ethylbenzene	ND	1.0	μg/L	1	1/18/2022 10:03:39 AN	B85236
Xylenes, Total	ND	2.0	μg/L	1	1/18/2022 10:03:39 AN	B85236
Surr: 4-Bromofluorobenzene	108	70-130	%Rec	1	1/18/2022 10:03:39 AN	B85236

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits Р Sample pH Not In Range
- RL Reporting Limit

Page 1 of 9

.

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2201617

Date Reported: 1/20/2022

CLIENT	Harvest	Client Sample ID: HP02
Project:	Lateral L2	Collection Date: 1/12/2022 12:00:00 PM
Lab ID:	2201617-002	Matrix: GROUNDWA Received Date: 1/15/2022 8:11:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8015M/D: DIESEL RANGE					Analyst	SB
Diesel Range Organics (DRO)	ND	1.4	mg/L	1	1/19/2022 2:48:21 PM	65057
Motor Oil Range Organics (MRO)	ND	7.0	mg/L	1	1/19/2022 2:48:21 PM	65057
Surr: DNOP	79.4	64.8-167	%Rec	1	1/19/2022 2:48:21 PM	65057
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	1/18/2022 10:27:05 AM	G85236
Surr: BFB	97.1	68.5-136	%Rec	1	1/18/2022 10:27:05 AM	G85236
EPA METHOD 8021B: VOLATILES					Analyst	NSB
Benzene	ND	1.0	μg/L	1	1/18/2022 10:27:05 AM	B85236
Toluene	ND	1.0	µg/L	1	1/18/2022 10:27:05 AM	B85236
Ethylbenzene	ND	1.0	µg/L	1	1/18/2022 10:27:05 AM	B85236
Xylenes, Total	ND	2.0	µg/L	1	1/18/2022 10:27:05 AM	B85236
Surr: 4-Bromofluorobenzene	110	70-130	%Rec	1	1/18/2022 10:27:05 AM	B85236

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 2 of 9

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2201617

Date Reported: 1/20/2022

CLIENT: Harvest	Client Sample ID: HP03
Project: Lateral L2	Collection Date: 1/12/2022 12:20:00 PM
Lab ID: 2201617-003	Matrix: GROUNDWA Received Date: 1/15/2022 8:11:00 AM

Analyses	Result	PQL (Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8015M/D: DIESEL RANGE					Analyst	SB
Diesel Range Organics (DRO)	ND	1.4	mg/L	1	1/19/2022 3:12:10 PM	65057
Motor Oil Range Organics (MRO)	ND	7.0	mg/L	1	1/19/2022 3:12:10 PM	65057
Surr: DNOP	91.7	64.8-167	%Rec	1	1/19/2022 3:12:10 PM	65057
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	1/18/2022 10:50:37 AM	G85236
Surr: BFB	95.5	68.5-136	%Rec	1	1/18/2022 10:50:37 AM	G85236
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	1.0	µg/L	1	1/18/2022 10:50:37 AM	B85236
Toluene	ND	1.0	µg/L	1	1/18/2022 10:50:37 AM	B85236
Ethylbenzene	ND	1.0	μg/L	1	1/18/2022 10:50:37 AM	B85236
Xylenes, Total	ND	2.0	μg/L	1	1/18/2022 10:50:37 AM	B85236
Surr: 4-Bromofluorobenzene	108	70-130	%Rec	1	1/18/2022 10:50:37 AM	B85236

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits Р Sample pH Not In Range
- RL Reporting Limit

Page 3 of 9

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2201617

Date Reported: 1/20/2022

CLIENT: Ha	rvest	(Client Sample ID: HP04
Project: Lat	eral L2		Collection Date: 1/12/2022 12:45:00 PM
Lab ID: 220	01617-004	Matrix: GROUNDWA	Received Date: 1/15/2022 8:11:00 AM

Analyses	Result	PQL	Qual Unit	s D	F Date Analyzed	Batch
EPA METHOD 8015M/D: DIESEL RANGE					Analyst	SB
Diesel Range Organics (DRO)	ND	1.4	mg/l	. 1	1/19/2022 3:36:00 PM	65057
Motor Oil Range Organics (MRO)	ND	7.0	mg/l	. 1	1/19/2022 3:36:00 PM	65057
Surr: DNOP	89.6	64.8-167	%Re	c 1	1/19/2022 3:36:00 PM	65057
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/l	. 1	1/18/2022 11:14:10 AM	G85236
Surr: BFB	97.1	68.5-136	%Re	c 1	1/18/2022 11:14:10 AM	G85236
EPA METHOD 8021B: VOLATILES					Analyst	NSB
Benzene	ND	1.0	µg/L	1	1/18/2022 11:14:10 AM	B85236
Toluene	ND	1.0	µg/L	1	1/18/2022 11:14:10 AM	B85236
Ethylbenzene	ND	1.0	µg/L	1	1/18/2022 11:14:10 AM	B85236
Xylenes, Total	ND	2.0	µg/L	1	1/18/2022 11:14:10 AM	B85236
Surr: 4-Bromofluorobenzene	109	70-130	%Re	c 1	1/18/2022 11:14:10 AM	B85236

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits Р Sample pH Not In Range
- RL Reporting Limit

Page 4 of 9

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2201617

Date Reported: 1/20/2022

CLIENT: Har	vest		Client Sample ID: HP05
Project: Late	eral L2		Collection Date: 1/12/2022 1:10:00 PM
Lab ID: 220	1617-005	Matrix: GROUNDWA	Received Date: 1/15/2022 8:11:00 AM

Analyses	Result	PQL (Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8015M/D: DIESEL RANGE					Analyst	SB
Diesel Range Organics (DRO)	ND	1.4	mg/L	1	1/19/2022 3:59:49 PM	65057
Motor Oil Range Organics (MRO)	ND	7.0	mg/L	1	1/19/2022 3:59:49 PM	65057
Surr: DNOP	89.0	64.8-167	%Rec	1	1/19/2022 3:59:49 PM	65057
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	1/18/2022 11:37:43 AN	G85236
Surr: BFB	97.9	68.5-136	%Rec	1	1/18/2022 11:37:43 AN	G85236
EPA METHOD 8021B: VOLATILES					Analyst	NSB
Benzene	ND	1.0	µg/L	1	1/18/2022 11:37:43 AN	B85236
Toluene	ND	1.0	µg/L	1	1/18/2022 11:37:43 AN	B85236
Ethylbenzene	ND	1.0	µg/L	1	1/18/2022 11:37:43 AN	B85236
Xylenes, Total	ND	2.0	µg/L	1	1/18/2022 11:37:43 AN	B85236
Surr: 4-Bromofluorobenzene	111	70-130	%Rec	1	1/18/2022 11:37:43 AN	B85236

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits Р Sample pH Not In Range
- RL Reporting Limit

Page 5 of 9

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2201617

Date Reported: 1/20/2022

CLIENT:	Harvest	Client Sample ID: HP06
Project:	Lateral L2	Collection Date: 1/12/2022 1:30:00 PM
Lab ID:	2201617-006	Matrix: GROUNDWA Received Date: 1/15/2022 8:11:00 AM

Analyses	Result	PQL (Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8015M/D: DIESEL RANGE					Analyst	: SB
Diesel Range Organics (DRO)	ND	1.4	mg/L	1	1/19/2022 4:23:38 PM	65057
Motor Oil Range Organics (MRO)	ND	7.0	mg/L	1	1/19/2022 4:23:38 PM	65057
Surr: DNOP	83.4	64.8-167	%Rec	1	1/19/2022 4:23:38 PM	65057
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	1/18/2022 12:01:11 PN	I G85236
Surr: BFB	99.3	68.5-136	%Rec	1	1/18/2022 12:01:11 PM	I G85236
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	1.0	μg/L	1	1/18/2022 12:01:11 PN	B85236
Toluene	ND	1.0	µg/L	1	1/18/2022 12:01:11 PN	1 B85236
Ethylbenzene	ND	1.0	µg/L	1	1/18/2022 12:01:11 PM	1 B85236
Xylenes, Total	ND	2.0	µg/L	1	1/18/2022 12:01:11 PM	1 B85236
Surr: 4-Bromofluorobenzene	112	70-130	%Rec	1	1/18/2022 12:01:11 PN	1 B85236

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 6 of 9

	WO#:	2201617
iental Analysis Laboratory, Inc.		20-Jan-22

	Harvest Lateral L2	2									
Sample ID: MB-650	57	SampT	ype: ME	BLK	Tes	tCode: E	PA Method	8015M/D: Die	sel Range	•	
Client ID: PBW		Batch	n ID: 65	057	F	RunNo: 8	35257				
Prep Date: 1/18/20	022	Analysis D)ate: 1/	19/2022	S	SeqNo: :	3000145	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (E	DRO)	ND	1.0								
Notor Oil Range Organics	s (MRO)	ND	5.0								
Surr: DNOP		0.51		0.5000		103	64.8	167			
Sample ID: LCS-65	057	SampT	ype: LC	S	Tes	tCode: E	PA Method	8015M/D: Die	sel Range	9	
Client ID: LCSW		Batch	n ID: 65	057	F	RunNo:	35257				
Prep Date: 1/18/20	022	Analysis D)ate: 1/	19/2022	5	SeqNo: :	3000146	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (E	DRO)	2.1	1.0	2.500	0	82.2	70	130			
Surr: DNOP		0.22		0.2500		89.4	64.8	167			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 9

Released to Imaging: 11/5/2024 1:18:12 PM

Harvest

Client:

	WO#:	2201617
nmental Analysis Laboratory, Inc.		20-Jan-22

Project: Lateral	L2									
Sample ID: mb	SampT	Гуре: МЕ	BLK	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e	
Client ID: PBW	Batc	h ID: G8	5236	F	RunNo: 8	5236				
Prep Date:	Analysis E	Date: 1/	18/2022	S	SeqNo: 2	998585	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND	0.050								
Surr: BFB	19		20.00		95.0	68.5	136			
Sample ID: 2.5ug gro Ics	SampT	ype: LC	S	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e	
Client ID: LCSW	Batcl	h ID: G8	5236	F	RunNo: 8	5236				
Prep Date:	Analysis E	Date: 1/	18/2022	S	SeqNo: 2	998586	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	0.48	0.050	0.5000	0	96.1	80	120			
Surr: BFB	21		20.00		107	68.5	136			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded Н
- Not Detected at the Reporting Limit ND
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- Analyte detected below quantitation limits J
- Sample pH Not In Range Р
- RL Reporting Limit

.

WO#:	2201617
	20-Jan-22

Client:	Harvest										
Project:	Lateral L2										
Sample ID: mb		SampT	ype: ME	BLK	Tes	tCode: El	iles				
Client ID: PBW		Batc	n ID: B8	5236	F	RunNo: 8	5236				
Prep Date:		Analysis E	Date: 1/	18/2022	S	SeqNo: 2	998610	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	1.0								
Toluene		ND	1.0								
Ethylbenzene		ND	1.0								
Xylenes, Total		ND	2.0								
Surr: 4-Bromofluoroben	izene	22		20.00		108	70	130			
Sample ID: 100ng b	tex lcs	SampT	ype: LC	s	Tes	tCode: El	iles				
Client ID: LCSW		Batc	n ID: B8	5236	F	RunNo: 8	5236				
Prep Date:		Analysis E	Date: 1/	18/2022	S	SeqNo: 2	998611	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		20	1.0	20.00	0	98.6	80	120			
Toluene		20	1.0	20.00	0	98.2	80	120			
Ethylbenzene		19	1.0	20.00	0	97.0	80	120			
Xylenes, Total		58	2.0	60.00	0	96.7	80	120			
Surr: 4-Bromofluoroben		22		20.00		111	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 9

Released to Imaging: 11/5/2024 1:18:12 PM

ENVIRONMENTA ANALYSIS LABORATORY	L <i>TEL: 50</i>	vironmental Analysis Labo 4901 Hawk Albuquerque, NM 5-345-3975 FAX: 505-34 e: clients.hallenvironment	ins NE 87109 Sa 1 5-4107	Page 92
Client Name: Harvest	Work Orde	er Number: 2201617		RcptNo: 1
Received By: Cheyenne	Cason 1/15/2022 8	:11:00 AM	Chul	
Completed By: Cheyenne C Reviewed By: A 1.17.2		52:22 AM	Chul Chul	
Chain of Custody				
1. Is Chain of Custody comple	te?	Yes 🔽	No 🗌	Not Present
2. How was the sample deliver	ed?	Courier		
Log In				
3. Was an attempt made to co	of the samples?	Yes 🔽	No 🗌	NA 🗌
4. Were all samples received a	t a temperature of >0° C to 6.0	°C Yes 🗹	No 🗌	NA 🗌
5. Sample(s) in proper containe	er(s)?	Yes 🗸	No 🗌	
6. Sufficient sample volume for	indicated test(s)?	Yes 🔽	No 🗌	
7. Are samples (except VOA an	d ONG) properly preserved?	Yes 🗹	No 🗌	
8. Was preservative added to be	ottles?	Yes	No 🔽	NA 🗌
9. Received at least 1 vial with h	eadspace <1/4" for AQ VOA?	Yes 🗸	No 🗌	
10. Were any sample containers		Yes	No 🗹	# of preserved
11. Does paperwork match bottle (Note discrepancies on chain		Yes 🔽	No 🗌	bottles checked for pH: (<2 or >12 unless noted)
12. Are matrices correctly identified	ed on Chain of Custody?	Yes 🔽	No 🗌	Adjusted?
13. Is it clear what analyses were		Yes 🗸	No 🗌	
 Were all holding times able to (If no, notify customer for auth) 	be met? orization.)	Yes 🔽	No 🗌	Checked by: JA 1772
Special Handling (if applic	able)		2	
15. Was client notified of all discr	epancies with this order?	Yes 🗌	No 🗌	
Person Notified:	an to construct the construction of the	Date:	and the state of the state of the	
By Whom:		Via: 🗌 eMail 🗌 P	hone 🗌 Fax	In Person
Regarding: Client Instructions:	and a second of the second and an and a provincian second and a second and a second and a second second second	ande a fan fan de skense de skrien fan de skrieder fan de skrieder fan de skrieder fan de skrieder fan de skrie Na it fan fan de skrieder skrieder fan de skrie		
16. Additional remarks: DRO	Analyzed From HEL	- 48ml VOA	- Janoles	vill be extractal at a dilot.
17. <u>Cooler Information</u> Cooler No Temp °C (Condition Seal Intact Seal		Signed By	50 1.17-21

Page 1 of 1

Received by				22 1	1:0	4:47 AN	1													Pag	e 93 of 1
		4901 Hawkins NE - Albuquerque, NM 87109		Anal	((204' 20 SIW2 508,2 0 / WKC	0 ^{2°,} I 8220 1, 280 1) 282 I	 > 0 / 03 > 3/80 > 3/80	VO 103; 103; 1002;	stic stic stro (AC) (AC	722001 Pe 3081 Pe 3081 Pe 3081 Pe 3081 Pe 3081 Pe 3260 (Vo 5260 (Vo 5260 (Vo 5260 (Vo	- × 3 3 3 3					×			Remarks:	
Turn-Around Time:		Lateral L2	Project #:		Project Manager:	Herb - wsp	E. Cerroll - WSP	Yes 🗆 No	irs: [Cooler Temp(including cF): O. I €0. I ⊆ O. 2 (°C)	Container Preservative HEAL No.	HC/ DOI	1 002 ×	(co3	(cot	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	X cool			Via: 1 Date Time	Time: Relinquished by: Received by: Via: Date Time 1802 Mustru Waller Eve Corry 1/16/22 Bate 1114
Client: Harvest Four Corners	Kley	Mailing Address:		Phone #:	email or Fax#: Corkey, Hayl & horvest, Co h	Validation)	n: 🗆 Az Compliance	□ Other	be)		Date Time Matrix Sample Name		17:00 1 HPO2	17:30 HPO3	12:45 HP04	13:10	¥ 13:30 ¥ HPOG			Time: Relinquished by: 13,30 Ercio Currul	Date: Time: Relinquished by: //4/27 1802 / Mustry Woller C

APPENDIX B: BORE LOGS

· · · · · · · · · · · · · · · · ·									
Letena la construcción de la con				E. Stores a	Ľ		Advancing Oppo		
							848 E. 2nd Ave		
	i a el constante Den como de constante	S. 15			DODD		Durango, Colo		NDIACRAM
				100	BORIN Boring/Well	Number:	······································	VELL COMPLETIO	N DIAGNAM
				1.12		MU	V-1	Lateral	L-2
					Date:	10-3.	17	Project Number: 034018	012
بلغلج والمحافظ والمحافظ				101 C	Logged By:	Danny		Drilled By: Danny B	lurne
Elevation:	Detector:		the state of the s	. Ne05	Drilling Me	hod:		Sampling Method:	
Gravel Pack:		PID	silty		Seal:	Exca	vation	Grout:	
10-20 Silica Sand	- Native bo	uekfill,	Sali	A	1	JA		NA	Depth to Liquid:
Casing Type: Schedule 40 PVC					Diameter:	r	Length: 6 5'	Hole Diameter:	- Not
Screen Type: Schedule 40 PVC	Slot: 0.0	10"			Diameter:	zh	Length: 5 '	Total Depth: 7'	Depth to Water:
	60			`		<u> </u>			2" PVC
Penetration Resistance Moisture Content Vapor (ppm)	C Staining? Sample #	Depth	Sample	Recovery	Soil/Rock Type		Lithology/Re	marks	Well W
enet Rois Con apor	HC St	(ft. bgs.)	Run	Recc	Soil/ Ty		Dimotogy/ite		Completion `
	Ĥ	0		_	•.	3	mal a site	Court Al box	
moist NA	NQ		8				med grain 1005c no stai		
		1	-			,		-	
		2						-	
		3	•						
								-	
		4						-	
		5	•						
	NO							nose exporsionic	
Wet NA	J∨ (*	6	-			mate	rial, Organic	odor -	
		7						-	
		8	•			+1	≈#4 F		t , /
							- 4		t native
		9	-			h	ell cosing Pla	ced in -	moterial
		10	· ·				cavation cle		backfill,
		11	·						- silty
		1						vation around -	- Saind -
		12	-			Ŵ	reil	-	+
		13						-	Į.
		14	·						+
		1	1					-	Ţ
		15							

. 8

Litera La Litera La Elevation:	Detector:				BORIN Boring/Well Date: Logged By: Drilling Met	G LOG/MONITORI Number: MW-7 1/31/2018 E. Carroll hod:	Ave Colorado 81301 NG WELL COMPLET Project: Project Number: 0340 Drilled By: L Sampling Method:	ION DIAGRAM al L-2 18012 TE IA
5660' Gravel Pack:		<u>PID</u>	9 co Bath		Seal:	Hand Auger	Grout:	
10-20-Silica Sand Casing Type:	<u>80 × 40 5,1</u>	nen Sand	11* - 10C	١	Diameter:	Length:	Hole Diameter:	Depth to Liquid:
Schedule 40 PVC Screen Type: Schedule 40 PVC	Slot:	0.010"			Diameter:	Length:	Total Depth: ~ 7.5	Depth to Water:
Penetration Resistance Moisture Content Vapor (ppm)	HC Staining?	Depth	Sample) Run	Recovery	Soil/Rock Type		gy/Remarks	Well Completion
moise 60.1 moise 60.1 moise 63.0 moise 3.7 wet 0.6	NO - NO - NO - NO -	0 1 2 3 4 5 6 7 8 9 10 11	═╴╼╴			Black Sand W/O	sandstone cobbles sandstone cobbles ganic matter loose ganic odor nostai U Increasing HgO Saturation	T / I ~ 3
		12 13 14 15						

> ---

r - - - - -

Literal L-2				Advancing Op 848 E. 2nd		
				Durango, C	olorado 81301	
				ING LOG/MONITORIN		ION DIAGRAM
			Boring/V	/ell Number: 		al L-2
			Date:	1/31/2018	Project Number: 0340	18012
and the second			Logged I		Drilled By:	TE
Elevation:	Detector:		Drilling I	Method:	Sampling Method:	I <u>B</u> JA
5660' Gravel Pack:		PID	Seal:	Hand Auger	Grout:	
10-20 Silica Sand 7 Casing Type:	0 x40 Silica	sand pre-Pack	Diameter	Length:	Hole Diameter:	Depth to Liquid:
Schedule 40 PVC	Slot:		Diameter	1" 5 '	Total Depth:	Depth to Water:
Screen Type: Schedule 40 PVC	0.0	010"		1" Length: 5	81	5'
Penetration Resistance Moisture Content Vapor (ppm)	HC Staining? Sample #	Depth Sample (ft. bgs.) Run	Recovery Soil/Rock Tvne	Lithology	y/Remarks	Well Completion
moise 1_1	NO NA			No Stain/Ode		
moist 1.0	NO NA	$\begin{array}{c}2\\3\\\end{array}$		SAA		
moig, 0,8	NTO NA	4 + <i>NA</i> 5 +		544		
wet 0.6	NO NA	$\begin{bmatrix} 6 & 1 \\ 7 & 1 \end{bmatrix} $		1005e it brown W/ It grey Met	m ol grain Sund ties H ₂ 0 Saturate	d+;.[[×`,
wet O.G	NO NA	8 1 MA 9 1		ŞA A		
				$TD \approx 8'$ $DTw \approx 5'$		
		12 13				+
		14 <u>+</u> 15				‡

Limit 2						Advancing Opp 848 E. 2nd A Durango, Co G LOG/MONITORING	ve Iorado 81301	ON DIAGRAM
					Boring/Well	MW	Project Number:	al L- <u>2</u>
					Date:	1/31/2018	Drilled By:	8012
an a			ι	13	Logged By:	E. Carroll	L1	ſ <u>Ē</u>
Elevation: 5660 ¹	Detector:	PID			Drilling Met	hod: Hand Auger	Sampling Method:	A
Gravel Pack: 1 0-20 Silica-Sand -	20×40 611	ica Sand f	Pre-Pack		Seal:	NA	Grout: NA	Depth to Liquid:
Casing Type: Schedule 40 PVC	<u> </u>				Diameter:	1"5	Hole Diameter: 4	Depth to Elquid. Depth to Water:
Screen Type: Schedule 40 PVC	Slot:	0.010"			Diameter:	1"5_	Total Depth:	Depth to water:
Penetration Resistance Moisture Content Vapor (ppm)	HC Staining?	t Depth (ft. bgs.)	Sample Run	Recovery	Soil/Rock Type	Lithology/	Remarks	Well Completion
	N0 ∧0	0				1005c, It. brown moist No stain	Med grain Sand 10dor	$\begin{array}{c c} x \\ x $
nnoise 2.7	NO	345				SAA		
wet 1. 1	NO	6 7 8 9 10 11 12 13 14				SAA 100Se It. grey Hod Satuarated No Stain loc TD = 6.51 $DTW \approx 61$		$\begin{array}{c} x \\ x $

Lateral L2		Boring/V Date: Logged I	E. Carroll	re orado 81301	1 L-2 8012
Elevation: Detector	PID	Drilling I	Hand Auger	Grout:	<u> </u>
Gravel Pack: 10-20-Silica Sand 20 x 4. Casing Type:	o silica sand pre- pac		Length:	Hole Diameter: 4 ¹¹	Depth to Liquid:
Schedule 40 PVC	Slot:	Diameter	1"5'	Tetal Danthy	Depth to Water:
Schedule 40 PVC	0.010"		Length: 5	-7.5	45'
Penetration Resistance Moisture Content Vapor (ppm) HC Staining?	** Depth Sampl	a Recovery Soil/Rock Tvne	Lithology/R	emarks	Well Completion
inoist 13,5 Ne moist 10,6 NO wet 1,8 NO	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1005e It brown Moist No Stain SAA 1005e It grey C Hoo Saturated No Stain TD~ 7.5' DTW~45'	oarse sand	$\begin{array}{c} x \\ x $

				Ľ	Advancing Opp	portunity					
					848 E. 2nd A						
					Durango, Colorado 81301						
	a Classification			BORIN Boring/Wei	NG LOG/MONITORING	WELL COMPLETI	ON DIAGRAM				
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					MW-G	Latera	1 L-2				
				Date: -4	AW-6 4124/19	Project Number: 03401	8012				
Citizen Course /				Logged By:	Danny Burns	Drilled By: Enviro	Drill				
Elevation:	Detector:		54595574	Drilling Me	thod: Hand Auger	Sampling Method: 1-101	nd Alager				
Gravel Pack:		PID		Seal:	Hollow Stem	Grout:	POOR				
10-20 Silica Sand Casing Type:				Diameter:	NA Length:	Hole Diameter:	Depth to Liquid:				
Schedule 40 PVC		Slot:		Diameter:	2°1' 5'	Total Depth:	MA Depth to Water:				
Schedule 40 PVC		0.010"		manieler:	2'1' Length: 5	Total Depth:	$\sim 5'$				
Penetration Resistance Moisture Content Vapor (ppm)	HC Staining?	[*] # Depth Sample (ft. bgs.) Run	Recovery	Soil/Rock Type	Lithology/I	Remarks	Well Completion				
Dry 0.0	NO	0	-	cP	Loose, dry, 1t, brown,	, med-coarse sand					
Dry 0.0 moist 0.0 UCt 0.0 UCt 0.0 UCt 1.4 Wet 58.0	NO NO	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		sР 5Р 5 С 5С	Loose, dry, it. brown, Loose, moist, it. bro SAA Loose, Saturated, J Some Ciay < 30 SAA RESUSAI @	wn, med-coarse rey, coarse sand 190					

		Ż					BORIN	Advancing Opp 848 E. 2nd A Durango, Co NG LOG/MONITORING	ve plorado 81301	FION DIAGRAM
			e //				Boring/Wel Date:		Project: Late Project Number:	ral L-2
8 8 /							Logged By:	4124119 Evic Carroll Danny Burns	Drilled By:)18012 ro Drill
Elevation:		Detector:		PID	and the second sec		Drilling Me		Sampling Method: Split	Spoon
Gravel Pack: 10-20 Sil Casing Type:	ica Sand						Seal: Diameter:	Length:	Grout: MA	Depth to Liquid:
Schedule Screen Type:	40 PVC		Slot:				Dimeter	<u>2°1" 5</u>	Total Depth:	Depth to Water:
Schedule	_	66	0.0	10"				2", 1' Length: 5		
Penetration Resistance Moisture	Content Vapor (ppm)	HC Staining?	Sample #	Depth (ft. bgs.)	Sample Run	Recovery	Soil/Rock Type	Lithology/		Well Completion
Dry	0,0	NO		0			6P	1005e, It. brown, m	ed-coarse sand	
moi	6 3.0	Ne		1 2 3			SP	1905e, moist, It. b Sand	rown, mcd-coarse	
wee	3.2	NO	annu c	4 _ 5 -	-		5PØ	SAA		
we	€ \$56.0	NO		6	•	-	SC	1005e, Gaturatel, g Gome Clay > i		
	- 0.1	NO		8 _ 9 _	-		CL	iompalt, Saturata lean Clay 7309	d, Ərey, Sandy o Sand	
				10 11	-					+
				12 13	-					÷
				13 _ 14 _						+
				15						

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 92435

CONDITIONS Operator: OGRID: Harvest Four Corners, LLC 373888 1755 Arroyo Dr Action Number: Bloomfield, NM 87413 92435 Action Type: [UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

CONDITIONO		
Created By	Condition	Condition Date
michael.buchanan	Revised Stage 1 Abatement Plan has been accepted as part of the incident record. App ID: 92435	11/5/2024